Page 349 - IJB-9-6
P. 349

International Journal of Bioprinting                                   3D printing and bioprinting in urology




               https://doi.org/10.1016/j.urology.2021.08.031   59.  Kim JH, Choi J, Kim M, et al., 2022, Immunotherapeutic
                                                                  effects of recombinant Bacillus Calmette–Guérin containing
            49.  Chandak P, Byrne N, Lynch H, et al., 2018, Three-dimensional
               printing in robot-assisted radical prostatectomy - an Idea,   sic gene in ex vivo and in vivo bladder cancer models.
               Development, Exploration, Assessment, Long-term follow-  Investig Clin Urol, 63(2): 228–237.
               up (IDEAL) Phase 2a study. BJU Int, 122(3): 360–361.  https://doi.org/10.4111/icu.20210425
               https://doi.org/10.1111/bju.14189               60.  Lee S, Kim JH, Kang SJ, et al., 2022, Customized multilayered
            50.  Ebbing J, Jäderling F, Collins JW, et al., 2018, Comparison   tissue-on-a-chip (MToC) to simulate Bacillus Calmette–
               of 3D printed prostate models with standard radiological   Guérin (BCG) immunotherapy for bladder cancer
               information to aid understanding of the precise location   treatment. BioChip J, 16(1): 67–81.
               of prostate cancer: A construct validation study. PLoS One,   https://doi.org/10.1007/s13206-022-00047-2
               13(6): e0199477.
                                                               61.  Chae S, Kim J, Yi H-G, et al., 2022, 3D bioprinting of an in
               https://doi.org/10.1371/journal.pone.0199477       vitro model of a biomimetic urinary bladder with a contract-
            51.  Cacciamani GE, Okhunov Z, Meneses AD,  et al., 2019,   release system. Micromachines, 13(2): 277.
               Impact of three-dimensional printing in urology: state of the   https://doi.org/10.3390/mi13020277
               art and future perspectives. A systematic review by ESUT-
               YAUWP Group. Eur Urol, 76(2): 209–221.          62.  Wu D, Berg J, Arlt B, et al., 2022, Bioprinted cancer model of
                                                                  neuroblastoma in a renal microenvironment as an efficiently
               https://doi.org/10.1016/j.eururo.2019.04.044
                                                                  applicable drug testing platform. Int J Mol Sci, 23(1): 122.
            52.  Ghazi AE, Teplitz BA, 2020, Role of 3D printing in surgical   https://doi.org/10.3390/ijms23010122
               education for robotic urology procedures.  Transl Androl
               Urol, 9(2): 931–941.                            63.  Sobreiro-Almeida R, Gomez-Florit M, Quinteira R,
                                                                  et  al., 2021, Decellularized kidney extracellular matrix
               https://tau.amegroups.com/article/view/35484
                                                                  bioinks recapitulate renal 3D microenvironment in vitro.
            53.  del Junco M, Okhunov Z, Yoon R, et al., 2014, Development   Biofabrication, 13(4): 17.
               and initial porcine and cadaver experience with three-
               dimensional printing of endoscopic and laparoscopic   https://doi.org/10.1088/1758-5090/ac0fca
               equipment. J Endourol, 29(1): 58–62.            64.  Kim JH, Lee S, Kang SJ, et al., 2021, Establishment of three-
               https://doi.org/10.1089/end.2014.0280              dimensional bioprinted bladder cancer-on-a-chip with a
                                                                  microfluidic  system  using  Bacillus  Calmette-Guerin.  Int J
            54.  Park C-J, Kim H-W, Jeong S, et al., 2015, Anti-reflux ureteral   Mol Sci, 22(16): 17.
               stent  with  polymeric  flap valve using three-dimensional
               printing: An in vitro study. J Endourol, 29(8): 933–938.  https://doi.org/10.3390/ijms22168887
               https://doi.org/10.1089/end.2015.0154           65.  Trondle K, Rizzo L, Pichler R, et al., 2021, Scalable
                                                                  fabrication of renal spheroids and nephron-like tubules by
            55.  Lee J, Sung J, Ki JJ, et al., 2022, 3D-printing-assisted   bioprinting and controlled self-assembly of epithelial cells.
               extraluminal anti-reflux diodes for preventing vesicoureteral   Biofabrication, 13(3): 16.
               reflux through double-J stents. Int J Bioprint, 8(2): 549.
                                                                  https://doi.org/10.1088/1758-5090/abe185
               https://doi.org/10.18063/ijb.v8i2.549
                                                               66.  Serex L, Sharma K, Rizov V,  et  al., 2021, Microfluidic-
            56.  Yoon J, Singh NK, Jang J, et al., 2022, 3D bioprinted in vitro
               secondary hyperoxaluria model by mimicking intestinal-  assisted bioprinting of tissues and organoids at high cell
               oxalate-malabsorption-related kidney stone disease.  Appl   concentrations. Biofabrication, 13(2): 025006.
               Phys Rev, 9(4): 041408.                            https://doi.org/10.1088/1758-5090/abca80
               https://doi.org/10.1063/5.0087345               67.  Lawlor KT, Vanslambrouck JM, Higgins JW, et al., 2021,
            57.  Pichler R, Rizzo L, Tröndle K, et al., 2022, Tuning the 3D   Cellular extrusion bioprinting improves kidney organoid
               microenvironment of reprogrammed tubule cells enhances   reproducibility and conformation. Nat Mater, 20(2): 260–271.
               biomimetic  modeling  of  polycystic  kidney  disease.   https://doi.org/10.1038/s41563-020-00853-9
               Biomaterials, 291(2022): 121910.
                                                               68.  Xie R, Korolj A, Liu C, et al., 2020, h-FIBER: Microfluidic
               https://doi.org/10.1016/j.biomaterials.2022.121910  topographical hollow fiber for studies of glomerular
            58.  Liu C, Campbell SB, Li J, et  al., 2022, High throughput   filtration barrier. ACS Central Sci, 6(6): 903–912.
               omnidirectional printing of tubular microstructures   https://doi.org/10.1021/acscentsci.9b01097
               from elastomeric polymers.  Adv Healthc Mater, 11(23):
               2201346.                                        69.  Sämfors S, Karlsson K, Sundberg J, et al., 2019, Biofabrication
                                                                  of bacterial nanocellulose scaffolds with complex vascular
               https://doi.org/10.1002/adhm.202201346
                                                                  structure. Biofabrication, 11(4): 045010.

            Volume 9 Issue 6 (2023)                        341                          https://doi.org/10.36922/ijb.0969
   344   345   346   347   348   349   350   351   352   353   354