Page 349 - IJB-9-6
P. 349
International Journal of Bioprinting 3D printing and bioprinting in urology
https://doi.org/10.1016/j.urology.2021.08.031 59. Kim JH, Choi J, Kim M, et al., 2022, Immunotherapeutic
effects of recombinant Bacillus Calmette–Guérin containing
49. Chandak P, Byrne N, Lynch H, et al., 2018, Three-dimensional
printing in robot-assisted radical prostatectomy - an Idea, sic gene in ex vivo and in vivo bladder cancer models.
Development, Exploration, Assessment, Long-term follow- Investig Clin Urol, 63(2): 228–237.
up (IDEAL) Phase 2a study. BJU Int, 122(3): 360–361. https://doi.org/10.4111/icu.20210425
https://doi.org/10.1111/bju.14189 60. Lee S, Kim JH, Kang SJ, et al., 2022, Customized multilayered
50. Ebbing J, Jäderling F, Collins JW, et al., 2018, Comparison tissue-on-a-chip (MToC) to simulate Bacillus Calmette–
of 3D printed prostate models with standard radiological Guérin (BCG) immunotherapy for bladder cancer
information to aid understanding of the precise location treatment. BioChip J, 16(1): 67–81.
of prostate cancer: A construct validation study. PLoS One, https://doi.org/10.1007/s13206-022-00047-2
13(6): e0199477.
61. Chae S, Kim J, Yi H-G, et al., 2022, 3D bioprinting of an in
https://doi.org/10.1371/journal.pone.0199477 vitro model of a biomimetic urinary bladder with a contract-
51. Cacciamani GE, Okhunov Z, Meneses AD, et al., 2019, release system. Micromachines, 13(2): 277.
Impact of three-dimensional printing in urology: state of the https://doi.org/10.3390/mi13020277
art and future perspectives. A systematic review by ESUT-
YAUWP Group. Eur Urol, 76(2): 209–221. 62. Wu D, Berg J, Arlt B, et al., 2022, Bioprinted cancer model of
neuroblastoma in a renal microenvironment as an efficiently
https://doi.org/10.1016/j.eururo.2019.04.044
applicable drug testing platform. Int J Mol Sci, 23(1): 122.
52. Ghazi AE, Teplitz BA, 2020, Role of 3D printing in surgical https://doi.org/10.3390/ijms23010122
education for robotic urology procedures. Transl Androl
Urol, 9(2): 931–941. 63. Sobreiro-Almeida R, Gomez-Florit M, Quinteira R,
et al., 2021, Decellularized kidney extracellular matrix
https://tau.amegroups.com/article/view/35484
bioinks recapitulate renal 3D microenvironment in vitro.
53. del Junco M, Okhunov Z, Yoon R, et al., 2014, Development Biofabrication, 13(4): 17.
and initial porcine and cadaver experience with three-
dimensional printing of endoscopic and laparoscopic https://doi.org/10.1088/1758-5090/ac0fca
equipment. J Endourol, 29(1): 58–62. 64. Kim JH, Lee S, Kang SJ, et al., 2021, Establishment of three-
https://doi.org/10.1089/end.2014.0280 dimensional bioprinted bladder cancer-on-a-chip with a
microfluidic system using Bacillus Calmette-Guerin. Int J
54. Park C-J, Kim H-W, Jeong S, et al., 2015, Anti-reflux ureteral Mol Sci, 22(16): 17.
stent with polymeric flap valve using three-dimensional
printing: An in vitro study. J Endourol, 29(8): 933–938. https://doi.org/10.3390/ijms22168887
https://doi.org/10.1089/end.2015.0154 65. Trondle K, Rizzo L, Pichler R, et al., 2021, Scalable
fabrication of renal spheroids and nephron-like tubules by
55. Lee J, Sung J, Ki JJ, et al., 2022, 3D-printing-assisted bioprinting and controlled self-assembly of epithelial cells.
extraluminal anti-reflux diodes for preventing vesicoureteral Biofabrication, 13(3): 16.
reflux through double-J stents. Int J Bioprint, 8(2): 549.
https://doi.org/10.1088/1758-5090/abe185
https://doi.org/10.18063/ijb.v8i2.549
66. Serex L, Sharma K, Rizov V, et al., 2021, Microfluidic-
56. Yoon J, Singh NK, Jang J, et al., 2022, 3D bioprinted in vitro
secondary hyperoxaluria model by mimicking intestinal- assisted bioprinting of tissues and organoids at high cell
oxalate-malabsorption-related kidney stone disease. Appl concentrations. Biofabrication, 13(2): 025006.
Phys Rev, 9(4): 041408. https://doi.org/10.1088/1758-5090/abca80
https://doi.org/10.1063/5.0087345 67. Lawlor KT, Vanslambrouck JM, Higgins JW, et al., 2021,
57. Pichler R, Rizzo L, Tröndle K, et al., 2022, Tuning the 3D Cellular extrusion bioprinting improves kidney organoid
microenvironment of reprogrammed tubule cells enhances reproducibility and conformation. Nat Mater, 20(2): 260–271.
biomimetic modeling of polycystic kidney disease. https://doi.org/10.1038/s41563-020-00853-9
Biomaterials, 291(2022): 121910.
68. Xie R, Korolj A, Liu C, et al., 2020, h-FIBER: Microfluidic
https://doi.org/10.1016/j.biomaterials.2022.121910 topographical hollow fiber for studies of glomerular
58. Liu C, Campbell SB, Li J, et al., 2022, High throughput filtration barrier. ACS Central Sci, 6(6): 903–912.
omnidirectional printing of tubular microstructures https://doi.org/10.1021/acscentsci.9b01097
from elastomeric polymers. Adv Healthc Mater, 11(23):
2201346. 69. Sämfors S, Karlsson K, Sundberg J, et al., 2019, Biofabrication
of bacterial nanocellulose scaffolds with complex vascular
https://doi.org/10.1002/adhm.202201346
structure. Biofabrication, 11(4): 045010.
Volume 9 Issue 6 (2023) 341 https://doi.org/10.36922/ijb.0969

