Page 395 - IJB-9-6
P. 395
International Journal of Bioprinting Biomimetic biofabrication of tumors volume
https://doi.org/10.18632/oncotarget.13857 https://doi.org/10.1007/s10856-019-6318-7
42. Sontheimer-Phelps A, Hassell BA, Ingber DE, 2019, 53. Revete A, Aparicio A, Cisterna BA, et al., 2022, Advancements
Modelling cancer in microfluidic human organs-on-chips. in the use of hydrogels for regenerative medicine: Properties
Nat Rev Cancer, 19(2): 65–81. and biomedical applications. Int J Biomater, 2022: 3606765.
https://doi.org/10.1038/s41568-018-0104-6 https://doi.org/10.1155/2022/3606765
43. Fang L, Liu Y, Qiu J, et al., 2022, Bioprinting and its use in 54. Suamte L, Tirkey A, Barman J, et al., 2023, Various
tumor-on-a-chip technology for cancer drug screening: A manufacturing methods and ideal properties of scaffolds
review. Int J Bioprinting, 8(4): 46–64. for tissue engineering applications. Smart Mater Manuf,
https://doi.org/10.18063/ijb.v8i4.603 1(November 2022): 100011.
44. Monteiro MV, Zhang YS, Gaspar VM, et al., 2022, https://doi.org/10.1016/j.smmf.2022.100011
3D-bioprinted cancer-on-a-chip: Level-up organotypic in
vitro models. Trends Biotechnol, 40(4): 432–447. 55. Jung MS, Skhinas JN, Du EY, et al., 2022, A high-throughput
3D bioprinted cancer cell migration and invasion model
https://doi.org/10.1016/J.TIBTECH.2021.08.007 with versatile and broad biological applicability. Biomater Sci
45. Cidonio G, Glinka M, Kim Y-H, et al., 2021, Nanocomposite 10(20): 5876–5887.
clay-based bioinks for skeletal tissue engineering. In Rainer https://doi.org/10.1039/d2bm00651k
A, Moroni L, eds. Computer-Aided Tissue Engineering:
Methods and Protocols, Springer US, New York, NY, 63–72. 56. Li J, Chen M, Fan X, et al., 2016, Recent advances in
bioprinting techniques: Approaches, applications and future
https://doi.org/10.1007/978-1-0716-0611-7_6 prospects. J Transl Med, 14(1): 1–15.
46. Kačarević ŽP, Rider PM, Alkildani S, et al., 2018, An https://doi.org/10.1186/s12967-016-1028-0
introduction to 3D bioprinting: Possibilities, challenges and
future aspects. Materials (Basel), 11(11): 2199. 57. Liu J, Shahriar M, Xu H, et al., 2022, Cell-laden bioink
circulation-assisted inkjet-based bioprinting to mitigate cell
https://doi.org/10.3390/ma11112199
sedimentation and aggregation. Biofabrication, 14(4).
47. Menezes R, Vincent R, Osorno L, et al., 2022, Biomaterials and
tissue engineering approaches using glycosaminoglycans for https://doi.org/10.1088/1758-5090/ac8fb7
tissue repair: Lessons learned from the native extracellular 58. Abu Owida H, 2022, Developments and clinical applications
matrix. Acta Biomater, 163: 210–227. of biomimetic tissue regeneration using 3D bioprinting
https://doi.org/10.1016/j.actbio.2022.09.064 technique. Appl Bionics Biomech, 2022: 2260216.
https://doi.org/10.1155/2022/2260216
48. Groll J, Burdick JA, Cho DW, et al., 2019, A definition
of bioinks and their distinction from biomaterial inks. 59. Wu Y, Su H, Li M, et al., 2023, Digital light processing-based
Biofabrication, 11(1): 013001. multi-material bioprinting: Processes, applications, and
perspectives. J Biomed Mater Res - Part A, 111(4): 527–542.
https://doi.org/10.1088/1758-5090/aaec52
https://doi.org/10.1002/jbm.a.37473
49. Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks
for 3D bioprinting: An overview. Biomater Sci 6(5): 915– 60. Hakobyan D, Médina C, Dusserre N, et al., 2020, Laser-
9946. assisted 3D bioprinting of exocrine pancreas spheroid
models for cancer initiation study. Biofabrication, 12(3):
https://doi.org/10.1039/c7bm00765e
035001.
50. Cidonio G, Glinka M, Dawson JI, et al., 2019, The cell in https://doi.org/10.1088/1758-5090/ab7cb8
the ink: Improving biofabrication by printing stem cells for
skeletal regenerative medicine. Biomaterials, 209(March): 61. Vrana NE, Gupta S, Mitra K, et al., 2022, From 3D printing
10–24. to 3D bioprinting: the material properties of polymeric
material and its derived bioink for achieving tissue specific
https://doi.org/10.1016/j.biomaterials.2019.04.009 architectures. Cell Tissue Bank, 23(3): 417–440.
51. Ji S, Guvendiren M, 2017, Recent advances in bioink design https://doi.org/10.1007/s10561-021-09975-z
for 3D bioprinting of tissues and organs. Front Bioeng
Biotechnol, 5(APR): 1–8. 62. Chand R, Muhire BS, Vijayavenkataraman S, 2022,
Computational fluid dynamics assessment of the effect
https://doi.org/10.3389/fbioe.2017.00023 of bioprinting parameters in extrusion bioprinting. Int J
52. Catoira MC, Fusaro L, Di Francesco D, et al., 2019, Overview Bioprinting, 8(2): 45–60.
of natural hydrogels for regenerative medicine applications. https://doi.org/10.18063/ijb.v8i2.545
J Mater Sci Mater Med, 30(10): 115.
Volume 9 Issue 6 (2023) 387 https://doi.org/10.36922/ijb.1022

