Page 395 - IJB-9-6
P. 395

International Journal of Bioprinting                               Biomimetic biofabrication of tumors volume




               https://doi.org/10.18632/oncotarget.13857          https://doi.org/10.1007/s10856-019-6318-7
            42.  Sontheimer-Phelps A, Hassell BA, Ingber DE, 2019,   53.  Revete A, Aparicio A, Cisterna BA, et al., 2022, Advancements
               Modelling cancer in microfluidic human organs-on-chips.   in the use of hydrogels for regenerative medicine: Properties
               Nat Rev Cancer, 19(2): 65–81.                      and biomedical applications. Int J Biomater, 2022: 3606765.
               https://doi.org/10.1038/s41568-018-0104-6          https://doi.org/10.1155/2022/3606765
            43.  Fang L, Liu Y, Qiu J, et al., 2022, Bioprinting and its use in   54.  Suamte L, Tirkey A, Barman J,  et al., 2023, Various
               tumor-on-a-chip technology for cancer drug screening: A   manufacturing methods and ideal properties of scaffolds
               review. Int J Bioprinting, 8(4): 46–64.            for tissue engineering applications.  Smart Mater Manuf,
               https://doi.org/10.18063/ijb.v8i4.603              1(November 2022): 100011.
            44.  Monteiro MV, Zhang YS, Gaspar VM,  et al., 2022,   https://doi.org/10.1016/j.smmf.2022.100011
               3D-bioprinted cancer-on-a-chip:  Level-up organotypic in
               vitro models. Trends Biotechnol, 40(4): 432–447.  55.  Jung MS, Skhinas JN, Du EY, et al., 2022, A high-throughput
                                                                  3D bioprinted cancer cell migration and invasion model
               https://doi.org/10.1016/J.TIBTECH.2021.08.007      with versatile and broad biological applicability. Biomater Sci
            45.  Cidonio G, Glinka M, Kim Y-H, et al., 2021, Nanocomposite   10(20): 5876–5887.
               clay-based bioinks for skeletal tissue engineering. In Rainer   https://doi.org/10.1039/d2bm00651k
               A, Moroni L, eds.  Computer-Aided Tissue Engineering:
               Methods and Protocols, Springer US, New York, NY, 63–72.  56.  Li J, Chen M, Fan X,  et al., 2016, Recent advances in
                                                                  bioprinting techniques: Approaches, applications and future
               https://doi.org/10.1007/978-1-0716-0611-7_6        prospects. J Transl Med, 14(1): 1–15.
            46.  Kačarević ŽP, Rider PM, Alkildani S,  et al., 2018, An   https://doi.org/10.1186/s12967-016-1028-0
               introduction to 3D bioprinting: Possibilities, challenges and
               future aspects. Materials (Basel), 11(11): 2199.  57.  Liu J, Shahriar M, Xu H,  et al., 2022, Cell-laden bioink
                                                                  circulation-assisted inkjet-based bioprinting to mitigate cell
               https://doi.org/10.3390/ma11112199
                                                                  sedimentation and aggregation. Biofabrication, 14(4).
            47.  Menezes R, Vincent R, Osorno L, et al., 2022, Biomaterials and
               tissue engineering approaches using glycosaminoglycans for   https://doi.org/10.1088/1758-5090/ac8fb7
               tissue repair: Lessons learned from the native extracellular   58.  Abu Owida H, 2022, Developments and clinical applications
               matrix. Acta Biomater, 163: 210–227.               of biomimetic tissue regeneration using 3D bioprinting

               https://doi.org/10.1016/j.actbio.2022.09.064       technique. Appl Bionics Biomech, 2022: 2260216.
                                                                  https://doi.org/10.1155/2022/2260216
            48.  Groll  J,  Burdick  JA,  Cho  DW,  et al.,  2019,  A  definition
               of bioinks and their distinction from biomaterial inks.   59.  Wu Y, Su H, Li M, et al., 2023, Digital light processing-based
               Biofabrication, 11(1): 013001.                     multi-material bioprinting: Processes, applications, and
                                                                  perspectives. J Biomed Mater Res - Part A, 111(4): 527–542.
               https://doi.org/10.1088/1758-5090/aaec52
                                                                  https://doi.org/10.1002/jbm.a.37473
            49.  Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks
               for 3D bioprinting: An overview.  Biomater Sci 6(5): 915–  60.  Hakobyan D, Médina C, Dusserre N,  et al., 2020, Laser-
               9946.                                              assisted  3D  bioprinting of  exocrine  pancreas  spheroid
                                                                  models for cancer initiation study.  Biofabrication, 12(3):
               https://doi.org/10.1039/c7bm00765e
                                                                  035001.
            50.  Cidonio G, Glinka M, Dawson JI, et al., 2019, The cell in   https://doi.org/10.1088/1758-5090/ab7cb8
               the ink: Improving biofabrication by printing stem cells for
               skeletal regenerative  medicine.  Biomaterials, 209(March):   61.  Vrana NE, Gupta S, Mitra K, et al., 2022, From 3D printing
               10–24.                                             to 3D bioprinting: the material properties of polymeric
                                                                  material and its derived bioink for achieving tissue specific
               https://doi.org/10.1016/j.biomaterials.2019.04.009  architectures. Cell Tissue Bank, 23(3): 417–440.
            51.  Ji S, Guvendiren M, 2017, Recent advances in bioink design   https://doi.org/10.1007/s10561-021-09975-z
               for 3D bioprinting of tissues and organs.  Front Bioeng
               Biotechnol, 5(APR): 1–8.                        62.  Chand R, Muhire BS, Vijayavenkataraman S, 2022,
                                                                  Computational fluid dynamics assessment of the effect
               https://doi.org/10.3389/fbioe.2017.00023           of bioprinting parameters in extrusion bioprinting.  Int J
            52.  Catoira MC, Fusaro L, Di Francesco D, et al., 2019, Overview   Bioprinting, 8(2): 45–60.
               of natural hydrogels for regenerative medicine applications.   https://doi.org/10.18063/ijb.v8i2.545
               J Mater Sci Mater Med, 30(10): 115.


            Volume 9 Issue 6 (2023)                        387                          https://doi.org/10.36922/ijb.1022
   390   391   392   393   394   395   396   397   398   399   400