Page 394 - IJB-9-6
P. 394

International Journal of Bioprinting                               Biomimetic biofabrication of tumors volume




            19.  Ju F, Atyah MM, Horstmann N, et al., 2022, Characteristics   https://doi.org/10.1016/j.isci.2022.103924
               of the cancer stem cell niche and therapeutic strategies. Stem   31.  Hoarau-Véchot J, Rafii A, Touboul C, et al., 2018, Halfway
               Cell Res Ther, 13(1): 1–17.
                                                                  between 2D and animal models: Are 3D cultures the ideal
               https://doi.org/10.1186/s13287-022-02904-1         tool to study cancer-microenvironment interactions?
            20.  Papaccio F, Paino F, Regad T, et al., 2017, Concise review:   Int J Mol Sci, 19(1): 181.
               Cancer cells, cancer stem cells, and mesenchymal stem cells:   https://doi.org/10.3390/ijms19010181
               Influence in cancer development.  Stem Cells Transl Med,
               6(12): 2115–2125.                               32.  Yada E, Wada S, Yoshida S, et al., 2018, Use of patient-derived
                                                                  xenograft mouse models in cancer research and treatment.
               https://doi.org/10.1002/sctm.17-0138               Futur Sci OA, 4(3): FSO271.
            21.  Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, et al., 2020,   https://doi.org/10.4155/fsoa-2017-0136
               Concepts of extracellular matrix remodelling in tumour
               progression and metastasis. Nat Commun, 11(1): 5120.  33.  Wu MC, Yu HW, Chen YQ, et al., 2022, Early committed
                                                                  polarization of intracellular tension in response to cell shape
               https://doi.org/10.1038/s41467-020-18794-x         determines the osteogenic differentiation of mesenchymal
            22.  Lee HM, Lee HJ, Chang JE, 2022, Inflammatory cytokine: An   stromal cells. Acta Biomater, 163: 287–301.
               attractive target for cancer treatment.  Biomedicines, 10(9):   https://doi.org/10.1016/j.actbio.2022.10.052
               2116.
                                                               34.  Marcotulli M, Tirelli MC, Volpi M, et al., 2022, Microfluidic
               https://doi.org/10.3390/biomedicines10092116       3D printing of emulsion ink for engineering porous
            23.  Kartikasari AER, Huertas CS, Mitchell A,  et al., 2021,   functionally graded materials. Adv Mater Technol, 2201244:
               Tumor-induced inflammatory cytokines and the emerging   1–12.
               diagnostic devices for cancer detection and prognosis. Front   https://doi.org/10.1002/admt.202201244
               Oncol, 11: 692142.
                                                               35.  Iafrate L, Benedetti MC, Donsante S, et al., 2022, Modelling
            24.  Tie Y, Tang F, Wei Y, et al., 2022, Immunosuppressive cells   skeletal pain harnessing tissue engineering. Vitr Model, 1(4–
               in  cancer:  Mechanisms  and potential  therapeutic  targets.    5): 289–307.
               J Hematol Oncol, 15(1): 61.
                                                                  https://doi.org/10.1007/s44164-022-00028-7
               https://doi.org/10.1186/s13045-022-01282-8
                                                               36.  Bhimani J, Ball K, Stebbing J, 2020, Patient-derived xenograft
            25.  Labani-Motlagh A, Ashja-Mahdavi M, Loskog A, 2020,   models—the future of personalised cancer treatment.
               The tumor microenvironment: A milieu hindering and   Br J Cancer, 122(5): 601–602.
               obstructing antitumor immune responses.  Front Immunol,
               11: 940.                                           https://doi.org/10.1038/s41416-019-0678-0
                                                               37.  Liu Y, Wu W, Cai C, et al., 2023, Patient-derived xenograft
            26.  Saleh  R,  Elkord  E,  2020,  Acquired  resistance  to
               cancer  immunotherapy:  Role  of  tumor-mediated   models in cancer therapy: Technologies and applications.
               immunosuppression. Semin Cancer Biol, 65: 13–27.   Signal Transduct Target Ther, 8(1): 160.
                                                                  https://doi.org/10.1038/s41392-023-01419-2
               https://doi.org/10.1016/j.semcancer.2019.07.017
                                                               38.  Singh J, 2012, The national centre for the replacement,
            27.  Zhou Y, Sun S, Ling T, et al., 2023, The role of fibroblast   refinement, and reduction of animals in research.
               growth factor 18 in  cancers: Functions and signaling   J Pharm Pharmacol  3(1): 87–9. PMID: 22368436; PMCID:
               pathways. Front Oncol, 13(May): 1–17.              PMC3284057.
               https://doi.org/10.3389/fonc.2023.1124520       39.  Prina-Mello A, Jain N, Liu B, et al., 2018, Culturing substrates
            28.  Wang S, Du P, Cao Y, et al., 2022, Cancer associated fibroblasts   influence the morphological, mechanical and biochemical
               secreted exosomal miR-1290 contributes to prostate cancer   features of lung adenocarcinoma cells cultured in 2D or 3D.
               cell growth and metastasis via targeting GSK3β. Cell Death   Tissue Cell, 50(December 2017): 15–30.
               Discov, 8(1): 371.                                 https://doi.org/10.1016/j.tice.2017.11.003
               https://doi.org/10.1038/s41420-022-01163-6      40.  Cui X, Hartanto Y, Zhang H, 2017, Advances in multicellular
            29.  Liu T, Han C, Wang S,  et  al., 2019, Cancer-associated   spheroids formation. J R Soc Interface, 14(127): 20160877.
               fibroblasts:  An  emerging  target  of  anti-cancer  https://doi.org/10.1098/rsif.2016.0877
               immunotherapy. J Hematol Oncol, 12(1): 1–15.
                                                               41.  Däster S, Amatruda N, Calabrese D, et al., 2017, Induction
               https://doi.org/10.1186/s13045-019-0770-1          of hypoxia and necrosis in multicellular tumor spheroids
                                                                  is associated with resistance to chemotherapy treatment.
            30.  Shomar A, Barak O, Brenner N, 2022, Cancer progression as
               a learning process. iScience, 25(3): 103924.       Oncotarget, 8(1): 1725–1736.


            Volume 9 Issue 6 (2023)                        386                          https://doi.org/10.36922/ijb.1022
   389   390   391   392   393   394   395   396   397   398   399