Page 394 - IJB-9-6
P. 394
International Journal of Bioprinting Biomimetic biofabrication of tumors volume
19. Ju F, Atyah MM, Horstmann N, et al., 2022, Characteristics https://doi.org/10.1016/j.isci.2022.103924
of the cancer stem cell niche and therapeutic strategies. Stem 31. Hoarau-Véchot J, Rafii A, Touboul C, et al., 2018, Halfway
Cell Res Ther, 13(1): 1–17.
between 2D and animal models: Are 3D cultures the ideal
https://doi.org/10.1186/s13287-022-02904-1 tool to study cancer-microenvironment interactions?
20. Papaccio F, Paino F, Regad T, et al., 2017, Concise review: Int J Mol Sci, 19(1): 181.
Cancer cells, cancer stem cells, and mesenchymal stem cells: https://doi.org/10.3390/ijms19010181
Influence in cancer development. Stem Cells Transl Med,
6(12): 2115–2125. 32. Yada E, Wada S, Yoshida S, et al., 2018, Use of patient-derived
xenograft mouse models in cancer research and treatment.
https://doi.org/10.1002/sctm.17-0138 Futur Sci OA, 4(3): FSO271.
21. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, et al., 2020, https://doi.org/10.4155/fsoa-2017-0136
Concepts of extracellular matrix remodelling in tumour
progression and metastasis. Nat Commun, 11(1): 5120. 33. Wu MC, Yu HW, Chen YQ, et al., 2022, Early committed
polarization of intracellular tension in response to cell shape
https://doi.org/10.1038/s41467-020-18794-x determines the osteogenic differentiation of mesenchymal
22. Lee HM, Lee HJ, Chang JE, 2022, Inflammatory cytokine: An stromal cells. Acta Biomater, 163: 287–301.
attractive target for cancer treatment. Biomedicines, 10(9): https://doi.org/10.1016/j.actbio.2022.10.052
2116.
34. Marcotulli M, Tirelli MC, Volpi M, et al., 2022, Microfluidic
https://doi.org/10.3390/biomedicines10092116 3D printing of emulsion ink for engineering porous
23. Kartikasari AER, Huertas CS, Mitchell A, et al., 2021, functionally graded materials. Adv Mater Technol, 2201244:
Tumor-induced inflammatory cytokines and the emerging 1–12.
diagnostic devices for cancer detection and prognosis. Front https://doi.org/10.1002/admt.202201244
Oncol, 11: 692142.
35. Iafrate L, Benedetti MC, Donsante S, et al., 2022, Modelling
24. Tie Y, Tang F, Wei Y, et al., 2022, Immunosuppressive cells skeletal pain harnessing tissue engineering. Vitr Model, 1(4–
in cancer: Mechanisms and potential therapeutic targets. 5): 289–307.
J Hematol Oncol, 15(1): 61.
https://doi.org/10.1007/s44164-022-00028-7
https://doi.org/10.1186/s13045-022-01282-8
36. Bhimani J, Ball K, Stebbing J, 2020, Patient-derived xenograft
25. Labani-Motlagh A, Ashja-Mahdavi M, Loskog A, 2020, models—the future of personalised cancer treatment.
The tumor microenvironment: A milieu hindering and Br J Cancer, 122(5): 601–602.
obstructing antitumor immune responses. Front Immunol,
11: 940. https://doi.org/10.1038/s41416-019-0678-0
37. Liu Y, Wu W, Cai C, et al., 2023, Patient-derived xenograft
26. Saleh R, Elkord E, 2020, Acquired resistance to
cancer immunotherapy: Role of tumor-mediated models in cancer therapy: Technologies and applications.
immunosuppression. Semin Cancer Biol, 65: 13–27. Signal Transduct Target Ther, 8(1): 160.
https://doi.org/10.1038/s41392-023-01419-2
https://doi.org/10.1016/j.semcancer.2019.07.017
38. Singh J, 2012, The national centre for the replacement,
27. Zhou Y, Sun S, Ling T, et al., 2023, The role of fibroblast refinement, and reduction of animals in research.
growth factor 18 in cancers: Functions and signaling J Pharm Pharmacol 3(1): 87–9. PMID: 22368436; PMCID:
pathways. Front Oncol, 13(May): 1–17. PMC3284057.
https://doi.org/10.3389/fonc.2023.1124520 39. Prina-Mello A, Jain N, Liu B, et al., 2018, Culturing substrates
28. Wang S, Du P, Cao Y, et al., 2022, Cancer associated fibroblasts influence the morphological, mechanical and biochemical
secreted exosomal miR-1290 contributes to prostate cancer features of lung adenocarcinoma cells cultured in 2D or 3D.
cell growth and metastasis via targeting GSK3β. Cell Death Tissue Cell, 50(December 2017): 15–30.
Discov, 8(1): 371. https://doi.org/10.1016/j.tice.2017.11.003
https://doi.org/10.1038/s41420-022-01163-6 40. Cui X, Hartanto Y, Zhang H, 2017, Advances in multicellular
29. Liu T, Han C, Wang S, et al., 2019, Cancer-associated spheroids formation. J R Soc Interface, 14(127): 20160877.
fibroblasts: An emerging target of anti-cancer https://doi.org/10.1098/rsif.2016.0877
immunotherapy. J Hematol Oncol, 12(1): 1–15.
41. Däster S, Amatruda N, Calabrese D, et al., 2017, Induction
https://doi.org/10.1186/s13045-019-0770-1 of hypoxia and necrosis in multicellular tumor spheroids
is associated with resistance to chemotherapy treatment.
30. Shomar A, Barak O, Brenner N, 2022, Cancer progression as
a learning process. iScience, 25(3): 103924. Oncotarget, 8(1): 1725–1736.
Volume 9 Issue 6 (2023) 386 https://doi.org/10.36922/ijb.1022

