Page 396 - IJB-9-6
P. 396

International Journal of Bioprinting                               Biomimetic biofabrication of tumors volume




            63.  van der Heide D, Cidonio G, Stoddart MJ, et al., 2022, 3D   multicellular bioprintable collagen-based hydrogels. Cancers
               printing of inorganic-biopolymer composites for bone   (Basel), 11(2): 1–17.
               regeneration. Biofabrication, 14(4): 042003.
                                                                  https://doi.org/10.3390/cancers11020180
               https://doi.org/10.1088/1758-5090/ac8cb2
                                                               75.  Dai X, Ma C, Lan Q,  et al., 2016, 3D bioprinted glioma
            64.  Cidonio G, Costantini M, Pierini F, et al., 2021, 3D printing   stem cells for brain tumor model and applications of drug
               of biphasic inks: Beyond single-scale architectural control. J   susceptibility. Biofabrication, 8(4): 1–11.
               Mater Chem C, 9(37): 12489–12508.                  https://doi.org/10.1088/1758-5090/8/4/045005
               https://doi.org/10.1039/D1TC02117F              76.  Heinrich MA, Bansal R, Lammers T,  et al., 2019,
            65.  Mi S, Yang S, Liu T, et al., 2019, A novel controllable cell   3D-bioprinted mini-brain: A glioblastoma model to study
               array printing technique on microfluidic chips. IEEE Trans   cellular interactions and therapeutics. Adv Mater, 31(14): 1–9.
               Biomed Eng, 66(9): 2512–2520.                      https://doi.org/10.1002/adma.201806590
               https://doi.org/10.1109/TBME.2019.2891016       77.  Monferrer E, Martín-Vañó S, Carretero A,  et al., 2020, A
            66.  Kolesky DB, Homan KA, Skylar-Scott MA,  et al., 2016,   three-dimensional bioprinted model to evaluate the effect
               Three-dimensional bioprinting of thick vascularized tissues.   of stiffness on neuroblastoma cell cluster dynamics and
               Proc Natl Acad Sci U S A, 113(12): 3179–3184.      behavior. Sci Rep, 10(1): 1–12.
               https://doi.org/10.1073/pnas.1521342113            https://doi.org/10.1038/s41598-020-62986-w
            67.  Hong S, Song JM, 2022, 3D bioprinted drug-resistant breast   78.  Yi HG, Jeong YH, Kim Y, et al., 2019, A bioprinted human-
               cancer spheroids for quantitative in situ evaluation of drug   glioblastoma-on-a-chip for the identification of patient-
               resistance. Acta Biomater, 138: 228–239.           specific responses to chemoradiotherapy. Nat Biomed Eng,
                                                                  3(7): 509–519.
               https://doi.org/10.1016/j.actbio.2021.10.031
                                                                  https://doi.org/10.1038/s41551-019-0363-x
            68.  Ling K, Huang G, Liu J, et al., 2015, Bioprinting-based high-
               throughput fabrication of three-dimensional MCF-7 human   79.  Wang X, Zhang X, Dai X,  et al., 2018, Tumor-like lung
               breast cancer cellular spheroids. Engineering, 1(2): 269–274.  cancer model based on 3D bioprinting. 3 Biotech, 8(12): 1–9.
                                                                  https://doi.org/10.1007/s13205-018-1519-1
               https://doi.org/10.15302/J-ENG-2015062
                                                               80.  Han S, Kim S, Chen Z, et al., 2020, 3D bioprinted vascularized
            69.  Zhou X, Zhu W, Nowicki M, et al., 2016, 3D bioprinting a   tumour for drug testing. Int J Mol Sci, 21(8): 1–14.
               cell-laden  bone  matrix  for  breast  cancer  metastasis  study.
               ACS Appl Mater Interfaces, 8(44): 30017–30026.     https://doi.org/10.3390/ijms21082993
               https://doi.org/10.1021/acsami.6b10673          81.  Mondal A, Gebeyehu A, Miranda M,  et al., 2019,
                                                                  Characterization and printability of sodium alginate -
            70.  Jiang T, Munguia-Lopez JG, Flores-Torres S,  et al., 2017,
               Directing the self-assembly of tumour spheroids by   Gelatin hydrogel for bioprinting NSCLC co-culture. Sci Rep,
               bioprinting cellular heterogeneous models within alginate/  9(1): 19914.
               gelatin hydrogels. Sci Rep, 7(1): 1–9.             https://doi.org/10.1038/s41598-019-55034-9
               https://doi.org/10.1038/s41598-017-04691-9      82.  Dong Q, Su X, Li X, et al., 2023, In vitro construction of lung
                                                                  cancer organoids by 3D bioprinting for drug evaluation.
            71.  Grolman JM, Zhang D, Smith AM, et al., 2015, Rapid 3D
               extrusion of synthetic tumor microenvironments.  Adv   Colloids Surf A Physicochem Eng Asp, 666: 131288.
               Mater, 27(37): 5512–5517.                          https://doi.org/10.1016/j.colsurfa.2023.131288
               https://doi.org/10.1002/adma.201501729          83.  Mei Y, Wu D, Berg J, et al., 2023, Generation of a perfusable
            72.  Reid JA, Palmer XL, Mollica PA, et al., 2019, A 3D bioprinter   3D lung cancer model by digital light processing. Int J Mol
               platform for mechanistic analysis of tumoroids and chimeric   Sci, 24(7): 6071.
               mammary organoids. Sci Rep, 9(1): 1–10.            https://doi.org/10.3390/ijms24076071
               https://doi.org/10.1038/s41598-019-43922-z      84.  Anderson WJ, Doyle LA, 2021, Updates from the 2020
            73.  Oronsky B, Reid TR, Oronsky A, et al., 2021, A review of   World Health Organization Classification of soft tissue and
               newly diagnosed glioblastoma. Front Oncol, 10(February):   bone tumours. Histopathology, 78(5): 644–657.
               1–10.                                              https://doi.org/10.1111/his.14265
               https://doi.org/10.3389/fonc.2020.574012        85.  Molina ER, Chim LK, Barrios S, et al., 2020, Modeling the
            74.  Campos DFD, Marquez AB, O’seanain C,  et al., 2019,   tumor microenvironment and pathogenic signaling in bone
               Exploring cancer cell behavior in vitro in three-dimensional   sarcoma. Tissue Eng Part B Rev, 26(3): 249–271


            Volume 9 Issue 6 (2023)                        388                          https://doi.org/10.36922/ijb.1022
   391   392   393   394   395   396   397   398   399   400   401