Page 398 - IJB-9-6
P. 398

International Journal of Bioprinting                               Biomimetic biofabrication of tumors volume




            106. Ye X, Weinberg RA, 2015, Epithelial-mesenchymal plasticity:   https://doi.org/10.1016/j.mtchem.2018.12.005
               A central regulator of cancer progression. Trends Cell Biol,   116. Huang J-F, Shen J, Li X, et al., 2020, Incidence of patients with
               25(11): 675–686.
                                                                  bone metastases at diagnosis of solid tumors in adults: A large
               https://doi.org/10.1016/j.tcb.2015.07.012          population-based study. Ann Transl Med, 8(7): 482–482.
            107. Sökeland G, Schumacher U, 2019, The functional role   https://doi.org/10.21037/ATM.2020.03.55
               of integrins during intra- and extravasation within the   117. Hiraga T, 2019, Bone metastasis: Interaction between cancer
               metastatic cascade. Mol Cancer, 18(1): 1–19.       cells and bone microenvironment. J Oral Biosci, 61(2): 95–98.
               https://doi.org/10.1186/s12943-018-0937-3          https://doi.org/10.1016/j.job.2019.02.002

            108. Arvanitis CD, Ferraro GB, Jain RK, 2020, The blood–brain   118. Macedo F, Ladeira K, Pinho F, et al., 2017, Bone metastases:
               barrier and blood–tumour barrier in brain tumours and   An overview. Oncol Rev, 11(1): 321.
               metastases. Nat Rev Cancer, 20(1): 26–41.
                                                                  https://doi.org/10.4081/oncol.2017.321
               https://doi.org/10.1038/s41568-019-0205-x
                                                               119. Meng  F,  Meyer  CM, Joung  D,  et al., 2019,  3D  bioprinted
            109. Peinado H, Zhang H, Matei IR, et al., 2017, Pre-metastatic   in  vitro  metastatic  models  via  reconstruction  of  tumor
               niches: Organ-specific homes for metastases.  Nat Rev   microenvironments. Adv Mater, 31(10): 1806899.
               Cancer, 17(5): 302–317.                            https://doi.org/10.1002/adma.201806899
               https://doi.org/10.1038/nrc.2017.6              120. Kingsley DM, Roberge CL, Rudkouskaya A,  et  al., 2019,

            110. Doglioni G, Parik S, Fendt SM, 2019, Interactions in the   Laser-based 3D bioprinting for spatial and size control of
               (pre)metastatic niche support metastasis formation.  Front   tumor spheroids and embryoid bodies. Acta Biomater, 95:
               Oncol, 9(MAR): 1–7.                                357–370.
               https://doi.org/10.3389/fonc.2019.00219            https://doi.org/10.1016/j.actbio.2019.02.014
                                                               121. Zhu W, Holmes B, Glazer RI,  et al., 2016, 3D printed
            111. Khan SU, Fatima K, Malik F, 2022, Understanding the cell   nanocomposite matrix for the study of breast cancer bone
               survival mechanism of anoikis-resistant cancer cells during   metastasis. Nanomed Nanotechnol Biol Med, 12(1): 69–79.
               different  steps  of  metastasis.  Clin Exp Metastasis,  39(5):
               715–726.                                           https://doi.org/10.1016/j.nano.2015.09.010
               https://doi.org/10.1007/s10585-022-10172-9      122. Dai X, Liu L, Ouyang J, et al., 2017, Coaxial 3D bioprinting
                                                                  of self-assembled multicellular heterogeneous tumor fibers.
            112. Lugano R, Ramachandran M, Dimberg A, 2020, Tumor   Sci Rep, 7(1): 1–12.
               angiogenesis: Causes, consequences, challenges and
               opportunities. Cell Mol Life Sci, 77(9): 1745–1770.  https://doi.org/10.1038/s41598-017-01581-y
               https://doi.org/10.1007/s00018-019-03351-7      123. Wang X, Li X, Dai X,  et al., 2018, Coaxial extrusion
                                                                  bioprinted shell-core hydrogel microfibers mimic glioma
            113. Makvandi P, Baghbantaraghdari Z, Zhou W,  et  al., 2021,   microenvironment and enhance the drug resistance of
               Gum polysaccharide/nanometal hybrid biocomposites in   cancer  cells.  Colloids Surf B Biointerfaces,  171(April):
               cancer diagnosis and therapy. Biotechnol Adv, 48: 107711.
                                                                  291–299.
               https://doi.org/10.1016/j.biotechadv.2021.107711
                                                                  https://doi.org/10.1016/j.colsurfb.2018.07.042
            114. Emami Nejad A, Najafgholian S, Rostami A,  et  al., 2021,   124. Hermida MA, Kumar JD, Schwarz D,  et al., 2020, Three
               The role of hypoxia in the tumor microenvironment and   dimensional in vitro models of cancer: Bioprinting
               development of cancer stem cell: A novel approach to   multilineage glioblastoma models. Adv Biol Regul, 75: 100658.
               developing treatment. Cancer Cell Int, 21(1): 62.
                                                                  https://doi.org/10.1016/j.jbior.2019.100658
               https://doi.org/10.1186/s12935-020-01719-5
            115. Lee C, Abelseth E, de la Vega L, et al., 2019, Bioprinting a
               novel glioblastoma tumor model using a fibrin-based bioink
               for drug screening. Mater Today Chem, 12: 78–84.












            Volume 9 Issue 6 (2023)                        390                          https://doi.org/10.36922/ijb.1022
   393   394   395   396   397   398   399   400   401   402   403