Page 397 - IJB-9-6
P. 397

International Journal of Bioprinting                               Biomimetic biofabrication of tumors volume




               https://doi.org/10.1089/ten.teb.2019.0302       96.  Zhang W, Zhao W, Li Q,  et al., 2021, 3D-printing
                                                                  magnesium–polycaprolactone loaded with melatonin
            86.  Hameed M, Dorfman H, 2011, Primary malignant bone
               tumors-recent developments.  Semin Diagn Pathol, 28(1):   inhibits the development of osteosarcoma by regulating cell-
               86–101.                                            in-cell structures. J Nanobiotechnol, 19(1): 263.
                                                                  https://doi.org/10.1186/s12951-021-01012-1
               https://doi.org/10.1053/j.semdp.2011.02.002
            87.  Liu X, Duan Z, Fang S, et al., 2023, Imaging assessment of   97.  Neufurth M, Wang X, Schröder HC, et al., 2014, Engineering
               the efficacy of chemotherapy in primary malignant bone   a morphogenetically active hydrogel for bioprinting of
               tumors: Recent advances in qualitative and quantitative   bioartificial tissue derived from human osteoblast-like
               magnetic resonance imaging and radiomics. J Magn Reson   SaOS-2 cells. Biomaterials, 35(31): 8810–8819.
               Imaging, 8.                                        https://doi.org/10.1016/j.biomaterials.2014.07.002
               https://doi.org/10.1002/jmri.28760              98.  Wang X, Tolba E, Schröder HC, et al., 2014, Effect of bioglass
            88.  Palmerini E, Righi A, Staals EL, 2020, Rare primary   on growth and biomineralization of SaOS-2 cells in hydrogel
               malignant bone sarcomas. Cancers (Basel), 12(11): 1–14.  after 3D cell bioprinting. PLoS One, 9(11): e112497.
               https://doi.org/10.3390/cancers12113092            https://doi.org/10.1371/journal.pone.0112497
            89.  Misaghi A, Goldin A, Awad M, et al., 2018, Osteosarcoma: A   99.  Farris AL, Lambrechts D, Zhou Y, et al., 2022, 3D-printed
               comprehensive review. SICOT-J, 4: 12.              oxygen-releasing scaffolds improve bone regeneration in
                                                                  mice. Biomaterials, 280(June 2021): 121318.
               https://doi.org/10.1051/sicotj/2017028
                                                                  https://doi.org/10.1016/j.biomaterials.2021.121318
            90.  Yao M, Zou Q, Zou W, et al., 2021, Bifunctional scaffolds
               of hydroxyapatite/poly(dopamine)/carboxymethyl chitosan   100. Hwang DG, Choi YM, Jang J, 2021, 3D bioprinting-based
               with osteogenesis and anti-osteosarcoma effect.  Biomater   vascularized  tissue models mimicking tissue-specific
               Sci, 9(9): 3319–3333.                              architecture and pathophysiology for in vitro studies. Front
                                                                  Bioeng Biotechnol, 9(May): 1–16.
               https://doi.org/10.1039/D0BM01785J
                                                                  https://doi.org/10.3389/fbioe.2021.685507
            91.  Lahr CA, Landgraf M, Sanchez-Herrero A,  et al., 2020,
               A 3D-printed biomaterials-based platform to advance   101. Kim BS, Cho W-W, Gao G,  et al., 2021, Construction of
               established therapy avenues against primary bone cancers.   tissue-level cancer-vascular model with high-precision
               Acta Biomater, 118: 69–82.                         position control via in situ 3D cell printing. Small Methods,
                                                                  5(7): 2100072.
               https://doi.org/10.1016/j.actbio.2020.10.006
            92.  Chow T, Wutami I, Lucarelli E,  et al., 2021, Creating in   https://doi.org/10.1002/SMTD.202100072
               vitro three-dimensional tumor models: A guide for the   102. Franca CM, Athirasala A, Subbiah R,  et  al., 2023, High-
               biofabrication of a primary osteosarcoma model. Tissue Eng -    throughput  bioprinting of  geometrically-controlled  pre-
               Part B Rev, 27(5): 514–529.                        vascularized injectable microgels for accelerated tissue
               https://doi.org/10.1089/ten.teb.2020.0254          regeneration. Adv Healthc Mater, 2202840: 1–11.

            93.  Delgrosso E, Scocozza F, Cansolino L,  et  al., 2023, 3D   https://doi.org/10.1002/adhm.202202840
               bioprinted osteosarcoma model for experimental boron   103. Swaminathan S, Hamid Q, Sun W, et al., 2019, Bioprinting
               neutron capture therapy (BNCT) applications: Preliminary   of 3D breast epithelial spheroids for human cancer models.
               assessment.  J Biomed Mater Res - Part B Appl Biomater,   Biofabrication, 11(2): 025003.
               111(8): 1571–1580.
                                                                  https://doi.org/10.1088/1758-5090/aafc49
               https://doi.org/10.1002/jbm.b.35255
            94.  Loi G, Stucchi G, Scocozza F, et al., 2023, Characterization of   104. Faihs L, Firouz B, Slezak P,  et al., 2022, A novel artificial
               a bioink combining extracellular matrix-like hydrogel with   intelligence-based approach for quantitative assessment of
               osteosarcoma cells: Preliminary results. Gels, 9(2): 129.  angiogenesis in the ex ovo CAM model.  Cancers (Basel),
                                                                  14(17): 4273 6071.
               https://doi.org/10.3390/GELS9020129
                                                                  https://doi.org/10.3390/cancers14174273
            95.  Sa M-W, Nguyen B-NB, Moriarty RA, et al., 2018, Fabrication
               and evaluation of 3D printed BCP scaffolds reinforced with   105. Parker AL, Benguigui M, Fornetti J,  et al., 2022, Current
               ZrO2 for bone tissue applications. Biotechnol Bioeng, 115(4):   challenges in metastasis research and future innovation for
               989–999.                                           clinical translation. Clin Exp Metastasis, 39(2): 263–277.
               https://doi.org/10.1002/bit.26514                  https://doi.org/10.1007/s10585-021-10144-5



            Volume 9 Issue 6 (2023)                        389                          https://doi.org/10.36922/ijb.1022
   392   393   394   395   396   397   398   399   400   401   402