Page 397 - IJB-9-6
P. 397
International Journal of Bioprinting Biomimetic biofabrication of tumors volume
https://doi.org/10.1089/ten.teb.2019.0302 96. Zhang W, Zhao W, Li Q, et al., 2021, 3D-printing
magnesium–polycaprolactone loaded with melatonin
86. Hameed M, Dorfman H, 2011, Primary malignant bone
tumors-recent developments. Semin Diagn Pathol, 28(1): inhibits the development of osteosarcoma by regulating cell-
86–101. in-cell structures. J Nanobiotechnol, 19(1): 263.
https://doi.org/10.1186/s12951-021-01012-1
https://doi.org/10.1053/j.semdp.2011.02.002
87. Liu X, Duan Z, Fang S, et al., 2023, Imaging assessment of 97. Neufurth M, Wang X, Schröder HC, et al., 2014, Engineering
the efficacy of chemotherapy in primary malignant bone a morphogenetically active hydrogel for bioprinting of
tumors: Recent advances in qualitative and quantitative bioartificial tissue derived from human osteoblast-like
magnetic resonance imaging and radiomics. J Magn Reson SaOS-2 cells. Biomaterials, 35(31): 8810–8819.
Imaging, 8. https://doi.org/10.1016/j.biomaterials.2014.07.002
https://doi.org/10.1002/jmri.28760 98. Wang X, Tolba E, Schröder HC, et al., 2014, Effect of bioglass
88. Palmerini E, Righi A, Staals EL, 2020, Rare primary on growth and biomineralization of SaOS-2 cells in hydrogel
malignant bone sarcomas. Cancers (Basel), 12(11): 1–14. after 3D cell bioprinting. PLoS One, 9(11): e112497.
https://doi.org/10.3390/cancers12113092 https://doi.org/10.1371/journal.pone.0112497
89. Misaghi A, Goldin A, Awad M, et al., 2018, Osteosarcoma: A 99. Farris AL, Lambrechts D, Zhou Y, et al., 2022, 3D-printed
comprehensive review. SICOT-J, 4: 12. oxygen-releasing scaffolds improve bone regeneration in
mice. Biomaterials, 280(June 2021): 121318.
https://doi.org/10.1051/sicotj/2017028
https://doi.org/10.1016/j.biomaterials.2021.121318
90. Yao M, Zou Q, Zou W, et al., 2021, Bifunctional scaffolds
of hydroxyapatite/poly(dopamine)/carboxymethyl chitosan 100. Hwang DG, Choi YM, Jang J, 2021, 3D bioprinting-based
with osteogenesis and anti-osteosarcoma effect. Biomater vascularized tissue models mimicking tissue-specific
Sci, 9(9): 3319–3333. architecture and pathophysiology for in vitro studies. Front
Bioeng Biotechnol, 9(May): 1–16.
https://doi.org/10.1039/D0BM01785J
https://doi.org/10.3389/fbioe.2021.685507
91. Lahr CA, Landgraf M, Sanchez-Herrero A, et al., 2020,
A 3D-printed biomaterials-based platform to advance 101. Kim BS, Cho W-W, Gao G, et al., 2021, Construction of
established therapy avenues against primary bone cancers. tissue-level cancer-vascular model with high-precision
Acta Biomater, 118: 69–82. position control via in situ 3D cell printing. Small Methods,
5(7): 2100072.
https://doi.org/10.1016/j.actbio.2020.10.006
92. Chow T, Wutami I, Lucarelli E, et al., 2021, Creating in https://doi.org/10.1002/SMTD.202100072
vitro three-dimensional tumor models: A guide for the 102. Franca CM, Athirasala A, Subbiah R, et al., 2023, High-
biofabrication of a primary osteosarcoma model. Tissue Eng - throughput bioprinting of geometrically-controlled pre-
Part B Rev, 27(5): 514–529. vascularized injectable microgels for accelerated tissue
https://doi.org/10.1089/ten.teb.2020.0254 regeneration. Adv Healthc Mater, 2202840: 1–11.
93. Delgrosso E, Scocozza F, Cansolino L, et al., 2023, 3D https://doi.org/10.1002/adhm.202202840
bioprinted osteosarcoma model for experimental boron 103. Swaminathan S, Hamid Q, Sun W, et al., 2019, Bioprinting
neutron capture therapy (BNCT) applications: Preliminary of 3D breast epithelial spheroids for human cancer models.
assessment. J Biomed Mater Res - Part B Appl Biomater, Biofabrication, 11(2): 025003.
111(8): 1571–1580.
https://doi.org/10.1088/1758-5090/aafc49
https://doi.org/10.1002/jbm.b.35255
94. Loi G, Stucchi G, Scocozza F, et al., 2023, Characterization of 104. Faihs L, Firouz B, Slezak P, et al., 2022, A novel artificial
a bioink combining extracellular matrix-like hydrogel with intelligence-based approach for quantitative assessment of
osteosarcoma cells: Preliminary results. Gels, 9(2): 129. angiogenesis in the ex ovo CAM model. Cancers (Basel),
14(17): 4273 6071.
https://doi.org/10.3390/GELS9020129
https://doi.org/10.3390/cancers14174273
95. Sa M-W, Nguyen B-NB, Moriarty RA, et al., 2018, Fabrication
and evaluation of 3D printed BCP scaffolds reinforced with 105. Parker AL, Benguigui M, Fornetti J, et al., 2022, Current
ZrO2 for bone tissue applications. Biotechnol Bioeng, 115(4): challenges in metastasis research and future innovation for
989–999. clinical translation. Clin Exp Metastasis, 39(2): 263–277.
https://doi.org/10.1002/bit.26514 https://doi.org/10.1007/s10585-021-10144-5
Volume 9 Issue 6 (2023) 389 https://doi.org/10.36922/ijb.1022

