Page 246 - v11i4
P. 246

International Journal of Bioprinting                                  Fine collagen scaffold for osteogenesis




               doi: 10.1016/j.msec.2021.111963.                   of    micro/nanoporous  collagen/dECM/silk-fibroin
                                                                  biocomposite scaffolds using a low temperature 3D printing
            7.   Bacakova L, Novotna K, Hadraba D, Musilkova J, Slepicka P,
               Beran M. Influence of biomimetically mineralized collagen   process for bone tissue regeneration.  Mater Sci Eng C.
               scaffolds on bone cell proliferation and immune activation.      2018;84:140-147.
                                                                  doi: 10.1016/j.msec.2017.11.013
               Polymers. 2022;14(3):602.
               doi: 10.3390/polym14030602                      18.  Yang L, Jin S, Shi L, et al. Cryogenically 3D printed
                                                                  biomimetic scaffolds containing decellularized small
            8.   Dewey MJ, Johnson EM, Slater ST, Milner DJ, Wheeler   intestinal submucosa and Sr2+/Fe3+ co-substituted
               MB, Harley BA, Mineralized collagen scaffolds fabricated   hydroxyapatite for bone tissue engineering.  Chem Eng J.
               with  amniotic  membrane  matrix  increase  osteogenesis   2022;431(4):133459.
               under  inflammatory  conditions.   Regen  Biomater.      doi: 10.1016/j.cej.2021.133459
               2020;7(3):247-258.
               doi: 10.1093/rb/rbaa005                         19.  Jiang S, Yu Z, Zhang L, et al. Effects of different aperture-sized
                                                                  type I collagen/silk fibroin scaffolds on the proliferation and
            9.   Eviana Putri NR, Wang X, Chen Y, Li X, Kawazoe N, Chen   differentiation of human dental pulp cells. Regen Biomater.
               G. Preparation of PLGA-collagen hybrid scaffolds with   2021;8(4):rbab028.
               controlled pore structures for cartilage tissue engineering.      doi: 10.1093/rb/rbab028.
               Prog Nat Sci Mater Int. 2020;30(5):642-650.
               doi: 10.1016/j.pnsc.2020.07.003.                20.  Kim G, Ahn S, Yoon H, Kim Y, Chun W. A cryogenic direct-
                                                                  plotting system for fabrication of 3D collagen scaffolds for
            10.  Gómez-Guillén MC, Giménez B, López-Caballero ME,   tissue engineering. J Mater Chem. 2009;19(46):8817-8823.
               Montero MP. Functional and bioactive properties of      doi: 10.1039/B914187A.
               collagen and gelatin from alternative sources: a review. Food
               Hydrocoll. 2011;25(8):1813-1827.                21.  Dutta SD, Hexiu J, Patel DK, Ganguly K, Lim KT. 3D-printed
               doi: 10.1016/j.foodhyd.2011.02.007.                bioactive and biodegradable hydrogel scaffolds of alginate/
                                                                  gelatin/cellulose nanocrystals for  tissue engineering.  Int J
            11.  Gurumurthy B, Janorkar AV. Improvements in mechanical   Biol Macromol. 2021;167:644-658.
               properties of collagen-based scaffolds for tissue engineering.   doi: 10.1016/j.ijbiomac.2020.12.011.
               Curr Opin Biomed Eng. 2021;17:100253.
               doi: 10.1016/j.cobme.2020.100253.               22.  Liu D, Dong  X, Han B,  Huang H, Qi M. Cellulose
                                                                  nanocrystal/collagen hydrogels reinforced by anisotropic
            12.  Kokol V, Pottathara YB, Mihelčič M, Perše LS. Rheological   structure: shear viscoelasticity and related strengthening
               properties of gelatine hydrogels affected by flow- and   mechanism. Comp Commun. 2020;21:100374.
               horizontally-induced cooling rates during 3D cryo-printing.   doi: 10.1016/j.coco.2020.100374.
               Colloids Surf A Physicochem Eng Asp. 2021;616(3):126356.
               doi: 10.1016/j.colsurfa.2021.126356.            23.  Zhang W, Shi K, Yang J, et al. 3D printing of recombinant
                                                                  collagen/chitosan methacrylate/nanoclay hydrogels loaded
            13.  Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Viscoelastic   with  Kartogenin  nanoparticles  for  cartilage  regeneration.
               properties of model segments of collagen molecules. Matrix   Regen Biomater. 2024;11:rbae097.
               Biol. 2012;31(2):141-149.                          doi: 10.1093/rb/rbae097.
               doi: 10.1016/j.matbio.2011.11.005.
                                                               24.  Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore
            14.  Huang H, Li K, Hou J, Shen C. A study of the temperature-  MS. Flow behavior prior to crosslinking: the need for
               dependent stress yielding behavior of a gelatin-based   precursor rheology for placement of hydrogels in medical
               hydrogel ink and its effects on the enhancement of the 3D   applications and for 3D bioprinting.  Prog Polym Sci.
               printing resolution. Polym Test. 2024;137(3):108501.  2019;91(43):126-140.
               doi: 10.1016/j.polymertesting.2024.108501.         doi: 10.1016/j.progpolymsci.2019.01.003.
            15.  Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL.   25.  Huang H, Dean D. 3-D printed porous cellulose acetate
               Three-dimensional plotted scaffolds with controlled pore   tissue scaffolds for additive manufacturing.  Addit Manuf.
               size gradients: effect of scaffold geometry on mechanical   2020;31:100927.
               performance and cell seeding efficiency.  Acta Biomater.      doi: 10.1016/j.addma.2019.100927
               2011;7(3):1009-1018.
               doi: 10.1016/j.actbio.2010.11.003.              26.  Wang Y, Yang S, Cai H, et al. A dual-crosslinking
                                                                  electroactive hydrogel based on gelatin methacrylate and
            16.  Harley BAC, Kim HD, Zaman MH, Yannas IV, Lauffenburger   dibenzaldehyde-terminated telechelic polyethylene glycol
               DA, Gibson LJ. Microarchitecture of three-dimensional   for 3D bio-printing. Sci Rep. 2024;14(1):4118.
               scaffolds influences cell migration behavior via junction      doi: 10.1038/s41598-024-54853-9.
               interactions. Biophys J. 2008;95(8):4013-4024.  27.  Heid S, Becker K, Byun J, et al. Bioprinting with bioactive
               doi: 10.1529/biophysj.107.122598.
                                                                  alginate dialdehyde-gelatin (ADA-GEL) composite bioinks:
            17.  Lee H, Yang GH, Kim M, Lee J, Huh J, Kim G. Fabrication   time-dependent in-situ crosslinking via addition of calcium-


            Volume 11 Issue 4 (2025)                       238                            doi: 10.36922/IJB025140116
   241   242   243   244   245   246   247   248   249   250   251