Page 246 - v11i4
P. 246
International Journal of Bioprinting Fine collagen scaffold for osteogenesis
doi: 10.1016/j.msec.2021.111963. of micro/nanoporous collagen/dECM/silk-fibroin
biocomposite scaffolds using a low temperature 3D printing
7. Bacakova L, Novotna K, Hadraba D, Musilkova J, Slepicka P,
Beran M. Influence of biomimetically mineralized collagen process for bone tissue regeneration. Mater Sci Eng C.
scaffolds on bone cell proliferation and immune activation. 2018;84:140-147.
doi: 10.1016/j.msec.2017.11.013
Polymers. 2022;14(3):602.
doi: 10.3390/polym14030602 18. Yang L, Jin S, Shi L, et al. Cryogenically 3D printed
biomimetic scaffolds containing decellularized small
8. Dewey MJ, Johnson EM, Slater ST, Milner DJ, Wheeler intestinal submucosa and Sr2+/Fe3+ co-substituted
MB, Harley BA, Mineralized collagen scaffolds fabricated hydroxyapatite for bone tissue engineering. Chem Eng J.
with amniotic membrane matrix increase osteogenesis 2022;431(4):133459.
under inflammatory conditions. Regen Biomater. doi: 10.1016/j.cej.2021.133459
2020;7(3):247-258.
doi: 10.1093/rb/rbaa005 19. Jiang S, Yu Z, Zhang L, et al. Effects of different aperture-sized
type I collagen/silk fibroin scaffolds on the proliferation and
9. Eviana Putri NR, Wang X, Chen Y, Li X, Kawazoe N, Chen differentiation of human dental pulp cells. Regen Biomater.
G. Preparation of PLGA-collagen hybrid scaffolds with 2021;8(4):rbab028.
controlled pore structures for cartilage tissue engineering. doi: 10.1093/rb/rbab028.
Prog Nat Sci Mater Int. 2020;30(5):642-650.
doi: 10.1016/j.pnsc.2020.07.003. 20. Kim G, Ahn S, Yoon H, Kim Y, Chun W. A cryogenic direct-
plotting system for fabrication of 3D collagen scaffolds for
10. Gómez-Guillén MC, Giménez B, López-Caballero ME, tissue engineering. J Mater Chem. 2009;19(46):8817-8823.
Montero MP. Functional and bioactive properties of doi: 10.1039/B914187A.
collagen and gelatin from alternative sources: a review. Food
Hydrocoll. 2011;25(8):1813-1827. 21. Dutta SD, Hexiu J, Patel DK, Ganguly K, Lim KT. 3D-printed
doi: 10.1016/j.foodhyd.2011.02.007. bioactive and biodegradable hydrogel scaffolds of alginate/
gelatin/cellulose nanocrystals for tissue engineering. Int J
11. Gurumurthy B, Janorkar AV. Improvements in mechanical Biol Macromol. 2021;167:644-658.
properties of collagen-based scaffolds for tissue engineering. doi: 10.1016/j.ijbiomac.2020.12.011.
Curr Opin Biomed Eng. 2021;17:100253.
doi: 10.1016/j.cobme.2020.100253. 22. Liu D, Dong X, Han B, Huang H, Qi M. Cellulose
nanocrystal/collagen hydrogels reinforced by anisotropic
12. Kokol V, Pottathara YB, Mihelčič M, Perše LS. Rheological structure: shear viscoelasticity and related strengthening
properties of gelatine hydrogels affected by flow- and mechanism. Comp Commun. 2020;21:100374.
horizontally-induced cooling rates during 3D cryo-printing. doi: 10.1016/j.coco.2020.100374.
Colloids Surf A Physicochem Eng Asp. 2021;616(3):126356.
doi: 10.1016/j.colsurfa.2021.126356. 23. Zhang W, Shi K, Yang J, et al. 3D printing of recombinant
collagen/chitosan methacrylate/nanoclay hydrogels loaded
13. Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Viscoelastic with Kartogenin nanoparticles for cartilage regeneration.
properties of model segments of collagen molecules. Matrix Regen Biomater. 2024;11:rbae097.
Biol. 2012;31(2):141-149. doi: 10.1093/rb/rbae097.
doi: 10.1016/j.matbio.2011.11.005.
24. Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore
14. Huang H, Li K, Hou J, Shen C. A study of the temperature- MS. Flow behavior prior to crosslinking: the need for
dependent stress yielding behavior of a gelatin-based precursor rheology for placement of hydrogels in medical
hydrogel ink and its effects on the enhancement of the 3D applications and for 3D bioprinting. Prog Polym Sci.
printing resolution. Polym Test. 2024;137(3):108501. 2019;91(43):126-140.
doi: 10.1016/j.polymertesting.2024.108501. doi: 10.1016/j.progpolymsci.2019.01.003.
15. Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL. 25. Huang H, Dean D. 3-D printed porous cellulose acetate
Three-dimensional plotted scaffolds with controlled pore tissue scaffolds for additive manufacturing. Addit Manuf.
size gradients: effect of scaffold geometry on mechanical 2020;31:100927.
performance and cell seeding efficiency. Acta Biomater. doi: 10.1016/j.addma.2019.100927
2011;7(3):1009-1018.
doi: 10.1016/j.actbio.2010.11.003. 26. Wang Y, Yang S, Cai H, et al. A dual-crosslinking
electroactive hydrogel based on gelatin methacrylate and
16. Harley BAC, Kim HD, Zaman MH, Yannas IV, Lauffenburger dibenzaldehyde-terminated telechelic polyethylene glycol
DA, Gibson LJ. Microarchitecture of three-dimensional for 3D bio-printing. Sci Rep. 2024;14(1):4118.
scaffolds influences cell migration behavior via junction doi: 10.1038/s41598-024-54853-9.
interactions. Biophys J. 2008;95(8):4013-4024. 27. Heid S, Becker K, Byun J, et al. Bioprinting with bioactive
doi: 10.1529/biophysj.107.122598.
alginate dialdehyde-gelatin (ADA-GEL) composite bioinks:
17. Lee H, Yang GH, Kim M, Lee J, Huh J, Kim G. Fabrication time-dependent in-situ crosslinking via addition of calcium-
Volume 11 Issue 4 (2025) 238 doi: 10.36922/IJB025140116