Page 248 - v11i4
P. 248

International Journal of Bioprinting                                  Fine collagen scaffold for osteogenesis




               doi: 10.1016/j.ijbiomac.2020.06.075.               doi: 10.1016/j.msec.2021.112382.
            50.  Gao L, Gan H, Meng Z, et al. Effects of genipin cross-linking   61.  Sun Y, Wu Q, Zhang Y, Dai K, Wei Y. 3D-bioprinted
               of chitosan hydrogels on cellular adhesion and viability.   gradient-structured scaffold generates anisotropic cartilage
               Colloids Surf B Biointerfaces. 2014;117:398–405.   with vascularization by pore-size-dependent activation of
               doi: 10.1016/j.colsurfb.2014.03.002.               HIF1α/FAK signaling axis. Nanomed Nanotechnol Biol Med.
            51.  Oustadi F, Imani R, Haghbin Nazarpak M, Sharifi AM.   2021;37(5):102426.
               Genipin‐crosslinked  gelatin  hydrogel  incorporated  doi: 10.1016/j.nano.2021.102426.
               with PLLA‐nanocylinders as a bone scaffold: synthesis,   62.  Diao J, OuYang J, Deng T, et al. 3D-plotted beta-tricalcium
               characterization, and mechanical properties evaluation.   phosphate scaffolds with smaller pore sizes  improve in
               Polym Adv Technol. 2020;31(8):1783-1792.           vivo bone regeneration and biomechanical properties in a
               doi: 10.1002/pat.4905.                             critical-sized calvarial defect rat model. Adv Healthc Mater.
            52.  Zafeiris K, Brasinika D, Karatza A, et al. Additive   2018;7(17):1800441.
               manufacturing  of  hydroxyapatite–chitosan–genipin  doi: 10.1002/adhm.201800441.
               composite scaffolds for bone tissue engineering applications.   63.  Bauer A, Gu L, Kwee B, et al. Hydrogel substrate stress-
               Mater Sci Eng C. 2021;119:111639.                  relaxation regulates the spreading and proliferation of
               doi: 10.1016/j.msec.2020.111639.                   mouse myoblasts. Acta Biomater. 2017;62(7):82-90.
            53.  Kim YB, Lee H, Kim GH. Strategy to achieve highly porous/  doi: 10.1016/j.actbio.2017.08.041.
               biocompatible macroscale cell blocks, using a collagen/  64.  Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment:
               genipin-bioink and an optimal 3D printing process.  ACS   hydrogel-based strategy for recapitulating dynamic ECM
               Appl Mater Interfaces. 2016;8(47):32230-32240.     mechanics. Adv Funct Mater. 2021;31(24):2100848.
               doi: 10.1021/acsami.6b11669.                       doi: 10.1002/adfm.202100848.
            54.  Hafezi F, Scoutaris N, Douroumis D, Boateng J. 3D printed   65.  Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ,
               chitosan dressing crosslinked with genipin for potential   Shenoy VB, Effects of extracellular matrix viscoelasticity on
               healing of chronic wounds. Int J Pharm. 2019;560:406-415.  cellular behaviour. Nature. 2020;584(7822):535-546.
               doi: 10.1016/j.ijpharm.2019.02.020.                doi: 10.1038/s41586-020-2612-2.
            55.  Yu Y, Xu S, Li S, Pan H. Genipin-cross-linked hydrogels   66.  Serag E, Eltawila AM, Salem EM, El-Maghraby A, Abd El-
               based on biomaterials for drug delivery: a review. Biomater   Aziz AM. Development of an innovative cylindrical carbon
               Sci. 2021;9(5):1583-1597.                          nanofiber/gelatin-polycaprolactone  hydrogel  scaffold
               doi: 10.1039/D0BM01403F.                           for enhanced bone regeneration.  Int J Biol Macromol.
            56.  Shao Y, Gan N, Gao B, He B. Sustainable 3D-printed   2025;306(8):141250.
               β-galactosidase immobilization coupled with continuous-  doi: 10.1016/j.ijbiomac.2025.141250.
               flow reactor for efficient lactose-free milk production. Chem   67.  Kalogeropoulou M, Díaz-Payno PJ, Mirzaali MJ, van Osch
               Eng J. 2024;481:148557.                            GJVM, Fratila-Apachitei LE, Zadpoor AA. 4D printed shape-
               doi: 10.1016/j.cej.2024.148557.                    shifting biomaterials for tissue engineering and regenerative
            57.  Liu F, Li W, Liu H, et al. Preparation of 3D printed chitosan/  medicine applications. Biofabrication. 2024;16(2):022002.
               polyvinyl alcohol double network hydrogel scaffolds.      doi: 10.1088/1758-5090/ad1e6f.
               Macromol Biosci. 2021;21(4):2000398.            68.  Kim H, Yang GH, Choi C, Cho Y, Kim G. Gelatin/PVA
               doi: 10.1002/mabi.202000398.                       scaffolds fabricated using a 3D-printing process employed
            58.  Erben A, Hörning M, Hartmann B, et al. Precision 3D-printed   with a low-temperature plate for hard tissue regeneration:
               cell scaffolds mimicking native tissue composition and   fabrication and characterizations.  Int J Biol Macromol.
               mechanics. Adv Healthc Mater. 2020;9(24):2000918.  2018;120:119-127.
               doi: 10.1002/adhm.202000918.                       doi: 10.1016/j.ijbiomac.2018.07.159.
            59.  Saito-Diaz K, Dietrich P, Saini T, et al. Genipin rescues   69.  Wu S-C, Chang W-H, Dong G-C, Chen K-Y, Chen Y-S,
               developmental  and  degenerative  defects  in  familial   Yao C-H. Cell adhesion and proliferation enhancement
               dysautonomia models and accelerates axon regeneration.   by gelatin nanofiber scaffolds.  J Bioact Compat Polym.
               Sci Transl Med. 2024;16(774):eadq2418.             2011;26(6):565-577.
               doi: 10.1126/scitranslmed.adq2418.                 doi: 10.1177/0883911511423563.
            60.  Luo C, Wang C, Wu X, et al. Influence of porous tantalum   70.  Wang J, Dongyang Z, Guangchao W, et al. Enhanced
               scaffold pore size on osteogenesis and osteointegration: a   bone regeneration with bioprinted GelMA/Bentonite
               comprehensive study based on 3D-printing technology.   scaffolds inspired by bone matrix.  Virtual Phys Prototyp.
               Mater Sci Eng C. 2021;129(5):112382.               2024;19(1):e2345765.




            Volume 11 Issue 4 (2025)                       240                            doi: 10.36922/IJB025140116
   243   244   245   246   247   248   249   250   251   252   253