Page 248 - v11i4
P. 248
International Journal of Bioprinting Fine collagen scaffold for osteogenesis
doi: 10.1016/j.ijbiomac.2020.06.075. doi: 10.1016/j.msec.2021.112382.
50. Gao L, Gan H, Meng Z, et al. Effects of genipin cross-linking 61. Sun Y, Wu Q, Zhang Y, Dai K, Wei Y. 3D-bioprinted
of chitosan hydrogels on cellular adhesion and viability. gradient-structured scaffold generates anisotropic cartilage
Colloids Surf B Biointerfaces. 2014;117:398–405. with vascularization by pore-size-dependent activation of
doi: 10.1016/j.colsurfb.2014.03.002. HIF1α/FAK signaling axis. Nanomed Nanotechnol Biol Med.
51. Oustadi F, Imani R, Haghbin Nazarpak M, Sharifi AM. 2021;37(5):102426.
Genipin‐crosslinked gelatin hydrogel incorporated doi: 10.1016/j.nano.2021.102426.
with PLLA‐nanocylinders as a bone scaffold: synthesis, 62. Diao J, OuYang J, Deng T, et al. 3D-plotted beta-tricalcium
characterization, and mechanical properties evaluation. phosphate scaffolds with smaller pore sizes improve in
Polym Adv Technol. 2020;31(8):1783-1792. vivo bone regeneration and biomechanical properties in a
doi: 10.1002/pat.4905. critical-sized calvarial defect rat model. Adv Healthc Mater.
52. Zafeiris K, Brasinika D, Karatza A, et al. Additive 2018;7(17):1800441.
manufacturing of hydroxyapatite–chitosan–genipin doi: 10.1002/adhm.201800441.
composite scaffolds for bone tissue engineering applications. 63. Bauer A, Gu L, Kwee B, et al. Hydrogel substrate stress-
Mater Sci Eng C. 2021;119:111639. relaxation regulates the spreading and proliferation of
doi: 10.1016/j.msec.2020.111639. mouse myoblasts. Acta Biomater. 2017;62(7):82-90.
53. Kim YB, Lee H, Kim GH. Strategy to achieve highly porous/ doi: 10.1016/j.actbio.2017.08.041.
biocompatible macroscale cell blocks, using a collagen/ 64. Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment:
genipin-bioink and an optimal 3D printing process. ACS hydrogel-based strategy for recapitulating dynamic ECM
Appl Mater Interfaces. 2016;8(47):32230-32240. mechanics. Adv Funct Mater. 2021;31(24):2100848.
doi: 10.1021/acsami.6b11669. doi: 10.1002/adfm.202100848.
54. Hafezi F, Scoutaris N, Douroumis D, Boateng J. 3D printed 65. Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ,
chitosan dressing crosslinked with genipin for potential Shenoy VB, Effects of extracellular matrix viscoelasticity on
healing of chronic wounds. Int J Pharm. 2019;560:406-415. cellular behaviour. Nature. 2020;584(7822):535-546.
doi: 10.1016/j.ijpharm.2019.02.020. doi: 10.1038/s41586-020-2612-2.
55. Yu Y, Xu S, Li S, Pan H. Genipin-cross-linked hydrogels 66. Serag E, Eltawila AM, Salem EM, El-Maghraby A, Abd El-
based on biomaterials for drug delivery: a review. Biomater Aziz AM. Development of an innovative cylindrical carbon
Sci. 2021;9(5):1583-1597. nanofiber/gelatin-polycaprolactone hydrogel scaffold
doi: 10.1039/D0BM01403F. for enhanced bone regeneration. Int J Biol Macromol.
56. Shao Y, Gan N, Gao B, He B. Sustainable 3D-printed 2025;306(8):141250.
β-galactosidase immobilization coupled with continuous- doi: 10.1016/j.ijbiomac.2025.141250.
flow reactor for efficient lactose-free milk production. Chem 67. Kalogeropoulou M, Díaz-Payno PJ, Mirzaali MJ, van Osch
Eng J. 2024;481:148557. GJVM, Fratila-Apachitei LE, Zadpoor AA. 4D printed shape-
doi: 10.1016/j.cej.2024.148557. shifting biomaterials for tissue engineering and regenerative
57. Liu F, Li W, Liu H, et al. Preparation of 3D printed chitosan/ medicine applications. Biofabrication. 2024;16(2):022002.
polyvinyl alcohol double network hydrogel scaffolds. doi: 10.1088/1758-5090/ad1e6f.
Macromol Biosci. 2021;21(4):2000398. 68. Kim H, Yang GH, Choi C, Cho Y, Kim G. Gelatin/PVA
doi: 10.1002/mabi.202000398. scaffolds fabricated using a 3D-printing process employed
58. Erben A, Hörning M, Hartmann B, et al. Precision 3D-printed with a low-temperature plate for hard tissue regeneration:
cell scaffolds mimicking native tissue composition and fabrication and characterizations. Int J Biol Macromol.
mechanics. Adv Healthc Mater. 2020;9(24):2000918. 2018;120:119-127.
doi: 10.1002/adhm.202000918. doi: 10.1016/j.ijbiomac.2018.07.159.
59. Saito-Diaz K, Dietrich P, Saini T, et al. Genipin rescues 69. Wu S-C, Chang W-H, Dong G-C, Chen K-Y, Chen Y-S,
developmental and degenerative defects in familial Yao C-H. Cell adhesion and proliferation enhancement
dysautonomia models and accelerates axon regeneration. by gelatin nanofiber scaffolds. J Bioact Compat Polym.
Sci Transl Med. 2024;16(774):eadq2418. 2011;26(6):565-577.
doi: 10.1126/scitranslmed.adq2418. doi: 10.1177/0883911511423563.
60. Luo C, Wang C, Wu X, et al. Influence of porous tantalum 70. Wang J, Dongyang Z, Guangchao W, et al. Enhanced
scaffold pore size on osteogenesis and osteointegration: a bone regeneration with bioprinted GelMA/Bentonite
comprehensive study based on 3D-printing technology. scaffolds inspired by bone matrix. Virtual Phys Prototyp.
Mater Sci Eng C. 2021;129(5):112382. 2024;19(1):e2345765.
Volume 11 Issue 4 (2025) 240 doi: 10.36922/IJB025140116