Page 249 - v11i4
P. 249

International Journal of Bioprinting                                  Fine collagen scaffold for osteogenesis




               doi: 10.1080/17452759.2024.2345765.                doi: 10.1016/j.biomaterials.2021.120769.
            71.  Salehi Abar E, Vandghanooni S, Torab A, Jaymand M,   81.  Koons GL, Diba M, Mikos AG. Materials design for bone-
               Eskandani M. A comprehensive review on nanocomposite   tissue engineering. Nat Rev Mater. 2020;5(8):584-603.
               biomaterials based on gelatin for bone tissue engineering.      doi: 10.1038/s41578-020-0204-2
               Int J Biol Macromol. 2024;254(1):127556.
               doi: 10.1016/j.ijbiomac.2023.127556.            82.  James AW. Review of signaling pathways governing MSC
                                                                  osteogenic and adipogenic differentiation.  Scientifica
            72.  Xu L, Anderson AL, Lu Q, Wang J. Role of fibrillar structure   2013;2013(1):684736.
               of collagenous carrier in bone sialoprotein-mediated matrix
               mineralization and osteoblast differentiation. Biomaterials.   doi: 10.1155/2013/684736.
               2007;28(4):750-761.                             83.  Vijayalekha A, Anandasadagopan SK, Pandurangan
               doi: 10.1016/j.biomaterials.2006.09.022.           AK. An overview of collagen-based composite scaffold
            73.  Shi H, Li Y, Xu K, Yin J. Advantages of photo-curable collagen-  for bone tissue engineering.  Appl  Biochem  Biotechnol.
               based cell-laden bioinks compared to methacrylated gelatin   2023;195(7):4617-4636.
               (GelMA) in digital light processing (DLP) and extrusion      doi: 10.1007/s12010-023-04318-y.
               bioprinting. Mater Today Bio. 2023;23(5):100799.  84.  Li Y, Liu Y, Li R, et al. Collagen-based biomaterials for bone
               doi: 10.1016/j.mtbio.2023.100799.
                                                                  tissue engineering. Mater Des. 2021;210(7):110049.
            74.  Di Luca A, Ostrowska B, Lorenzo-Moldero I, et al. Gradients   doi: 10.1016/j.matdes.2021.110049.
               in pore size enhance the osteogenic differentiation of human
               mesenchymal stromal cells in three-dimensional scaffolds.   85.  Mu  X, Agostinacchio  F, Xiang N, et  al.  Recent  advances
               Sci Rep. 2016;6(1):22898.                          in  3D  printing  with  protein-based  inks.  Prog  Polym  Sci.
               doi: 10.1038/srep22898.                            2021;115:101375.
                                                                  doi: 10.1016/j.progpolymsci.2021.101375.
            75.  Xu L, Meng F, Ni M, Lee Y, Li G. N-cadherin regulates
               osteogenesis and migration of bone marrow-derived   86.  Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW,
               mesenchymal stem cells. Mol Biol Rep. 2013;40(3):2533-2539.  Luyten FP, Picart C. Bone regeneration strategies: engineered
               doi: 10.1007/s11033-012-2334-0.                    scaffolds, bioactive molecules and stem cells current stage
            76.  Zhu M, Lin S, Sun Y, Feng Q, Li G, Bian L.  Hydrogels   and future perspectives. Biomaterials. 2018;180:143-162.
               functionalized with N-cadherin mimetic peptide enhance   doi: 10.1016/j.biomaterials.2018.07.017.
               osteogenesis of hMSCs by emulating the osteogenic niche.   87.  Zhao H-y, Wu J, Zhu J-j, et al. Research advances in tissue
               Biomaterials. 2016;77:44-52.                       engineering materials for sustained release of growth factors.
               doi: 10.1016/j.biomaterials.2015.10.072.           BioMed Res Int. 2015;2015(6):808202.
            77.  Guntur AR, Rosen CJ, Naski MC. N-cadherin adherens      doi: 10.1155/2015/808202
               junctions mediate osteogenesis through PI3K signaling.
               Bone. 2012;50(1):54-62.                         88.  De Witte T-M, Fratila-Apachitei LE, Zadpoor AA, Peppas
               doi: 10.1016/j.bone.2011.09.036.                   NA. Bone tissue engineering via growth factor delivery:
                                                                  from scaffolds  to complex matrices.  Regen Biomater.
            78.  Burzi IS, Parchi PD, Barachini S, et al. Hypoxia promotes   2018;5(4):197-211.
               the stemness of mesangiogenic progenitor cells and prevents      doi: 10.1093/rb/rby013
               osteogenic but not angiogenic differentiation. Stem Cell Rev
               Rep. 2024;20(7):1830-1842.                      89.  Shrivats AR, McDermott MC, Hollinger JO. Bone tissue
               doi: 10.1007/s12015-024-10749-9.                   engineering: state of the union.  Drug Discov Today,
            79.  Hu L, Chen W, Qian A, Li Y-P. Wnt/β-catenin signaling   2014;19(6):781-786.
               components and mechanisms in bone formation,       doi: 10.1016/j.drudis.2014.04.010.
               homeostasis, and disease. Bone Res. 2024;12(1):39.  90.  Oryan A, Alidadi S, Moshiri A, Bigham-Sadegh A. Bone
               doi: 10.1038/s41413-024-00342-8.                   morphogenetic proteins: a powerful osteoinductive
            80.  Swanson WB, Omi M,  Zhang Z, et al. Macropore design   compound with non-negligible side effects and limitations.
               of tissue engineering scaffolds regulates mesenchymal stem   BioFactors. 2014;40(5):459-481.
               cell differentiation fate. Biomaterials. 2021;272(1):120769.  doi: 10.1002/biof.1177.











            Volume 11 Issue 4 (2025)                       241                            doi: 10.36922/IJB025140116
   244   245   246   247   248   249   250   251   252   253   254