Page 247 - v11i4
P. 247

International Journal of Bioprinting                                  Fine collagen scaffold for osteogenesis




               silicate particles tunes in vitro stability of 3D bioprinted   38.  Hyun K, Wilhelm M, Klein CO, et al. A review of nonlinear
               constructs. Bioprinting. 2022;26:e00200.           oscillatory shear tests: analysis and application of large
               doi: 10.1016/j.bprint.2022.e00200.                 amplitude oscillatory shear (LAOS).  Prog Polym Sci.
                                                                  2011;36(12):1697-1753.
            28.  Jiang  Y,  Zhou  J,  Yang  Z,  et  al.  Dialdehyde  cellulose
               nanocrystal/gelatin hydrogel optimized for 3D printing   doi: 10.1016/j.progpolymsci.2011.02.002.
               applications. J Mater Sci. 2018;53(16):11883-11900.  39.  Wang Y, Selomulya C. Food rheology applications of
               doi: 10.1007/s10853-018-2407-0.                    large amplitude oscillation shear (LAOS). Trends Food Sci
                                                                  Technol. 2022;127(4):221-244.
            29.  Aghajanzadeh MS, Imani R, Nazarpak MH. In situ forming   doi: 10.1016/j.tifs.2022.05.018.
               aldehyde-modified xanthan/gelatin hydrogel for tissue
               engineering applications:  synthesis,  characterization,  and   40.  Liu D, Nikoo M, Boran G, Zhou P, Regenstein JM. Collagen
               optimization. J Mater Sci. 2023;58(35):14187-14206.  and gelatin. Annu Rev Food Sci Technol. 2015;6:527-557.
               doi: 10.1007/s10853-023-08878-6.                   doi: 10.1146/annurev-food-031414-111800.
            30.  Cheng  Q-P, Hsu S-h.  A self-healing  hydrogel and   41.  Komsa-Penkova R, Koynova R, Kostov G, Tenchov B.
               injectable cryogel  of  gelatin  methacryloyl-polyurethane   Discrete reduction of type I collagen thermal stability upon
               double network for 3D printing.  Acta Biomater. 2023;   oxidation. Biophys Chem. 2000;83(3):185-195.
               164(3):124-138.                                    doi: 10.1016/S0301-4622(99)00135-0.
               doi: 10.1016/j.actbio.2023.04.023.              42.  Offeddu GS, Ashworth JC, Cameron RE, Oyen ML.
            31.  Tohamy H-AS, Taha G, Sultan M. Dialdehyde cellulose/  Structural determinants of hydration, mechanics and fluid
               gelatin hydrogel as a packaging material for manganese   flow in freeze-dried collagen scaffolds.  Acta Biomater.
               oxides  adsorbents  for  wastewater  remediation:  2016;41:193-203.
               characterization and performance evaluation.  Int J Biol.   doi: 10.1016/j.actbio.2016.05.024.
               Macromol. 2023;248:125931.                      43.  Varley MC, Neelakantan S, Clyne TW, Dean J, Brooks RA,
               doi: 10.1016/j.ijbiomac.2023.125931.               Markaki AE. Cell structure, stiffness and permeability of
            32.  Lu Y, Zhao M, Peng Y, et al. A physicochemical double-  freeze-dried collagen scaffolds in dry and hydrated states.
               cross-linked  gelatin  hydrogel  with  enhanced  antibacterial   Acta Biomater. 2016;33:166-175.
               and anti-inflammatory capabilities for improving wound   doi: 10.1016/j.actbio.2016.01.041.
               healing. J Nanobiotechnol. 2022;20(1):426.      44.  O’Brien FJ, Harley BA, Yannas IV, Gibson L. Influence of
               doi: 10.1186/s12951-022-01634-z.                   freezing rate on pore structure in freeze-dried collagen-
            33.  Kim MH, Lee YW, Jung W-K, Oh J, Nam SY. Enhanced   GAG scaffolds. Biomaterials. 2004;25(6):1077-1086.
               rheological behaviors of alginate hydrogels with carrageenan   doi: 10.1016/S0142-9612(03)00630-6.
               for extrusion-based bioprinting.  J Mech Behav Biomed   45.  Sionkowska A, Kozłowska J. Properties and modification of
               Mater. 2019;98:187-194.                            porous 3-D collagen/hydroxyapatite composites. Int J Biol
               doi: 10.1016/j.jmbbm.2019.06.014.                  Macromol. 2013;52(1):250-259.
            34.  Basu P, Saha N, Saha P. Swelling and rheological study of   doi: 10.1016/j.ijbiomac.2012.10.002.
               calcium phosphate filled bacterial cellulose‐based hydrogel   46.  Solorio L, Zwolinski C, Lund AW, Farrell MJ, Stegemann
               scaffold. J Appl Polym Sci. 2020;137(14):48522.    JP. Gelatin microspheres crosslinked with genipin for
               doi: 10.1002/app.48522                             local delivery of growth factors.  J Tissue Eng Regen Med.
            35.  Li Q, Xu S, Feng Q, et al. 3D printed silk-gelatin hydrogel   2010;4(7):514-523.
               scaffold with different porous structure and cell seeding   doi: 10.1002/term.267.
               strategy for cartilage regeneration.  Bioact Mater.   47.  Nickerson MT, Patel J, Heyd DV, Rousseau D, Paulson AT.
               2021;6(10):3396-3410.                              Kinetic  and  mechanistic  considerations  in  the gelation
               doi: 10.1016/j.bioactmat.2021.03.013.              of genipin-crosslinked gelatin.  Int J Biol Macromol.
                                                                  2006;39(4):298-302.
            36.  Huang H, Ayariga J, Ning H, Nyairo E, Dean D. Freeze-
               printing of pectin/alginate scaffolds with high resolution,   doi: 10.1016/j.ijbiomac.2006.04.010.
               overhang structures and interconnected porous network.   48.  Manickam B, Nair R, Elumalai M. ‘Genipin’ – the natural
               Addit Manuf. 2021;4:102120.                        water soluble cross-linking agent and its importance in the
               doi: 10.1016/j.addma.2021.102120.                  modified drug delivery systems: an overview.  Curr  Drug
                                                                  Deliv. 2014;11(1):139.
            37.  Townsend AK, Wilson HJ. Small- and large-amplitude
               oscillatory  rheometry  with  bead–spring  dumbbells  in      doi: 10.2174/15672018113106660059.
               Stokesian dynamics to mimic viscoelasticity. J Non-Newton   49.  Adamiak  K,  Sionkowska  A.  Current methods  of
               Fluid Mech. 2018;261(1):136-152.                   collagen cross-linking: review.  Int J Biol Macromol.
               doi: 10.1016/j.jnnfm.2018.08.010.                  2020;161(8):550-560.

            Volume 11 Issue 4 (2025)                       239                            doi: 10.36922/IJB025140116
   242   243   244   245   246   247   248   249   250   251   252