Page 67 - v11i4
P. 67

International Journal of Bioprinting                                3D bioprinting of nerve guidance conduits




            29.  Wang G, Zhao W, Liu YF, Cheng TJ. Review of space   41.  Qin JZ, Wang PJ, Wang Y. An experimental study on the
               manufacturing technique and developments.  Sci Sin-Phys   repair of peripheral nerve defects by using polylactic-
               Mech Astron. 2020;50(4):0416.                      glycolic acid microfilaments wrapped in muscle flap and
               doi: 10.1360/SSPMA-2019-0416                       prefabricated in amniotic tube to simulate peripheral nerve
                                                                  regeneration microenvironment.  Chin J Tissue Eng Res.
            30.  Schmitt M, Mehta RM, Kim IY. Additive manufacturing infill   2009;13(16):3093-3096.
               optimization for automotive 3D-printed ABS components.      doi: 10.3969/j.issn.3093-3096.2009.13.16.
               Rapid Prototyp. J. 2020;26(1):89-99.
               doi: 10.1108/RPJ-01-2019-0007                   42.  Lundborg G, Kanje M. Bioartificial nerve grafts: a prototype.
                                                                  Scand J Plast Reconstr Surg Hand Surg. 1996;30(2):105-110.
            31.  Alhnan MA, Okwuosa TC, Sadia M, Wan KW,          doi: 10.3109/02844319609056391
               Ahmed W, Arafat B. Emergence of 3D printed dosage
               forms: opportunities and challenges.  Pharma  Res.   43.  Wang SF, Cai L. Polymers for fabricating nerve conduits. Int
               2016;33(8):1817-1832.                              J Polym Sci. 2010;2010:1-20.
               doi: 10.1007/s11095-016-1933-1                     doi: 10.1155/2010/138686
            32.  Alexander P, Stefan K, Ernst R. Additive manufacturing in   44.  Moore MJ, Friedman JA, Lewellyn EB, et al. Multiple-
               construction: a review on processes, applications, and digital   channel scaffolds to promote spinal cord axon regeneration.
               planning methods. Addit Manuf. 2019;30:100894.     Biomaterials. 2006;27(3):419-429.
               doi: 10.1016/j.addma.2019.100894                   doi: 10.1016/j.biomaterials.2005.07.045
            33.  Chakraborty S, Biswas MC. 3D printing technology of   45.  Lee DJ, Fontaine A, Meng XZ, Park D. Biomimetic nerve
               polymer-fiber composites in textile and fashion industry: a   guidance conduit containing intraluminal microchannels
               potential roadmap of concept to consumer. Compos Struct.   with aligned nanofibers markedly facilitates in nerve
               2020;248:112562.                                   regeneration. ACS Biomater Sci Eng. 2016;2(8):1403-1410.
               doi: 10.1016/j.compstruct.2020.112562              doi: 10.1021/acsbiomaterials.6b00344
                                                               46.  Wang YM, WangWJ, Wo Y, et al. Orientated guidance
            34.  Qian  Y,  Han  QX,  Zhao  XT,  Li  H,  Yuan  WE,  Fan  CY.
               Asymmetrical 3d nanoceria channel for severe neurological   of peripheral nerve regeneration using conduits with a
               defect regeneration. iScience. 2019;12:216-231.    microtube array sheet (MTAS). ACS Appl Mater Interfaces.
               doi: 10.1016/j.isci.2019.01.013                    2015;7(16):8437-8450.
                                                                  doi: 10.1021/acsami.5b00215
            35.  Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising   47.  Apablaza JA, Lezcano MF, Marquez AL, Sánchez KG,
               the definition of an evolving field.  Biofabrication.   Oporto GH, Dias FJ. Main morphological characteristics
               2016;8(1):013001.                                  of tubular polymeric scaffolds to promote peripheral nerve
               doi: 10.1088/1758-5090/8/1/013001
                                                                  regeneration-a scoping review. Polymers. 2021;13(15):2563.
            36.  Moroni L, Boland T, Burdick JA, et al. Biofabrication: a      doi: 10.3390/polym13152563
               guide to technology and terminology.  Trends Biotechnol.   48.  Wan Y, Zhang J, Luo Y, Zhou T, Wu H. Preparation and
               2018;36(4):384-402.                                degradation of chitosan-poly(p-dioxanone)/silk fibroin
               doi: 10.1016/j.tibtech.2017.10.015                 porous conduits. Polym Degrad Stabil. 2015;119:46-55.
            37.  Ijpma FFA, De Graaf RCV, Meek MF. The early history      doi: 10.1016/j.polymdegradstab.2015.05.004
               of tubulation in nerve repair.  J Hand Surg-Eur. Vol.   49.  Odelius K, Höglund A, Kumar S, et al. Porosity and pore
               2008;33E(5):581-586.                               size regulate the degradation product profile of polylactide.
               doi: 10.1177/1753193408091349                      Biomacromolecules. 2011;12(4):1250-1258.
            38.  Lundborg G, Longo FM, Varón S. Nerve regeneration      doi: 10.1021/bm1015464
               model and trophic factors in vivo. Brain Res. 1982;232(1):   50.  Wu LB, Ding JD. Effects of porosity and pore size on in vitro
               157-161.                                           degradation of three-dimensional porous poly(D,L-lactide-
               doi: 10.1016/0006-8993(82)90618-7                  coglycolide) scaffolds for tissue engineering. J Biomed Mater
            39.  Williams LR, Longo FM, Powell HC, Lundborg G, Varón S.   Res Part A. 2005;75(4):767-777.
               Spatial-temporal progress of peripheral nerve regeneration      doi: 10.1002/jbm.a.30487
               within a silicone chamber: parameters for a bioassay. J Comp   51.  Song  CB,  Zhang  JP,  Cen  L, Xi  ZH, Zhao  L,  Yuan  WK.
               Neurol. 1983;218(4):460-70.                        Modeling strategies for the degradation behavior of porous
               doi: 10.1002/cne.902180409                         polyester materials based on their key structural features.
                                                                  Ind Eng Chem Res. 2020;59(33):14806-14816.
            40.  Ruiter GCW, Malessy MJA, Yaszemski MJ, Windebank AJ,
               Spinner RJ. Designing ideal conduits for peripheral nerve      doi: 10.1021/acs.iecr.0c02694
               repair. Neurosurg Focus. 2009;26(2):E5.         52.  Tao J, Hu Y, Wang SJ, et al. A 3D-engineered porous conduit
               doi: 10.3171/FOC.2009.26.2.E5                      for peripheral nerve repair. Sci Rep. 2017;7:46038.



            Volume 11 Issue 4 (2025)                        59                            doi: 10.36922/IJB025140120
   62   63   64   65   66   67   68   69   70   71   72