Page 68 - v11i4
P. 68
International Journal of Bioprinting 3D bioprinting of nerve guidance conduits
doi: 10.1038/srep46038 64. Wang EG, Inaba K, Byerly S, et al. Optimal timing for repair
of peripheral nerve injuries. J Trauma Acute Care Surg.
53. Clark P, Connolly P, Curtis SG, Dow JAT, Wilkinson CDW.
Topographical control of cell behavior: I. Simple step cues. 2017;83(5):875-881.
Development. 1987;99(3):439-448. doi: 10.1097/TA.0000000000001570
doi: 10.1242/dev.99.3.439. 65. Wu GG, Wen XY, Kuang R, et al. Roles of macrophages and
https://webofscience.clarivate.cn/wos/alldb/full-record/ their interactions with schwann cells after peripheral nerve
WOS:A1987G384800014 injury. Cell Mol Neurobiol. 2023;44(1):11.
54. Miller C, Jeftinija S, Mallapragada S. Synergistic effects of doi: 10.1007/s10571-023-01442-5
physical and chemical guidance cues on neurite alignment 66. Gezercan Y, Menekse G, Ökten AI, et al. The outcomes of
and outgrowth on biodegradable polymer substrates. Tissue late term surgical treatment of penetrating peripheral nerve
Eng. 2002;8(3):367-378. injuries. Turk Neurosurg. 2026;26(1):146-152.
doi: 10.1089/107632702760184646 doi: 10.5137/1019-5149.JTN.14094-15.1
55. Schmalenberg KE, Uhrich KE. Micropatterned polymer 67. Vijayavenkataraman S. Nerve guide conduits for peripheral
substrates control alignment of proliferating Schwann nerve injury repair: A review on design, materials and
cells to direct neuronal regeneration. Biomaterials. fabrication methods. Acta Biomaterialia. 2020;106:54-69,
2005;26(12):1423-1430. doi: 10.1016/j.actbio.2020.02.003
doi: 10.1016/j.biomaterials.2004.04.046
68. Satchanska G, Davidova S, Petrov PD. Natural and synthetic
56. Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK. polymers for biomedical and environmental applications.
Synergistic effects of micropatterned biodegradable conduits Polymer. 2024;16(8):1159.
and Schwann cells on sciatic nerve regeneration. J Neural doi: 10.3390/polym16081159
Eng. 2004;1(3):151-157.
doi: 10.1088/1741-2560/1/3/004 69. Ciardelli G, Chiono V. Materials for peripheral nerve
regeneration. Macromol Biosci. 2006;6(1):13-26.
57. Davis B, Wojtalewicz S, Labroo P, et al. Controlled release doi: 10.1002/mabi.200500151
of FK506 from micropatterned PLGA films: potential for
application in peripheral nerve repair. Neural Regen Res. 70. Chiono V, Tonda‐Turo C, Ciardelli G. Artificial scaffolds
2018;13(7):1247-1252. for peripheral nerve reconstruction. Int Rev Neurobiol.
doi: 10.4103/1673-5374.235063 2009;87:173-198.
doi: 10.1016/S0074-7742(09)87009-8
58. Yu X, Zhang DT, Liu C, et al. Micropatterned poly(D,
L-lactide-co-caprolactone) conduits with KHI-peptide and 71. Gu XS, Ding F, Yang YM, Liu J. Construction of tissue
NGF promote peripheral nerve repair after severe traction engineered nerve grafts and their application in peripheral
injury. Front Bioeng Biotechnol. 2021;9:744230. nerve regeneration. Prog Neurobiol. 2011;93(2):204-230.
doi: 10.3389/fbioe.2021.744230 doi: 10.1016/j.pneurobio.2010.11.002
59. Bolleboom A, de Ruiter GCW, Coert JH, Tuk B, Holstege JC, 72. Benowitz LI, Popovich PG. Inflammation and axon
van Neck JW. Novel experimental surgical strategy to prevent regeneration. Curr Opin Neurol. 2011;24(6):577-583.
traumatic neuroma formation by combining a 3D-printed doi: 10.1097/WCO.0b013e32834c208d
Y-tube with an autograft. Lab Invest. 2019;130(1):184-196. 73. Zhao YH, Wang YJ, Gong JH, et al. Chitosan degradation
doi: 10.3171/2017.8.JNS17276 products facilitate peripheral nerve regeneration by
60. Zhang J, Tao J, Cheng H, et al. Nerve transfer with 3D-printed improving macrophage-constructed microenvironments.
branch nerve Conduits. Burns Trauma. 2022;10:tkac010. Biomaterials. 2017;134:64-77.
doi: 10.1093/burnst/tkac010 doi: 10.1016/j.biomaterials.2017.02.026
61. Hu Y, Wu Y, Gou ZY, et al. 3D-engineering of cellularized 74. Nawrotek K, Kubicka M, Gatkowska J, et. al. Controlling the
conduits for peripheral nerve regeneration. Sci Rep. spatiotemporal release of nerve growth factor by chitosan/
2016;6:32184. polycaprolactone conduits for use in peripheral nerve
doi: 10.1038/srep32184 regeneration. Int J Mol Sci. 2022;23(5):2852.
doi: 10.3390/ijms23052852.
62. Johnson BN, Lancaster KZ, Zhen GH, et al. 3D printed
anatomical nerve regeneration pathways. Adv Funct Mater. 75. Bianchini M, Zinno C, Micera S, Riva ER. Improved
2015;25(39):6205-6217. physiochemical properties of chitosan@PCL nerve
doi: 10.1002/adfm.201501760 conduits by natural molecule crosslinking. Biomolecules.
2023;13(12):1712.
63. Carvalho CR, Oliveira JM, Reis RL. Modern trends for doi: 10.3390/biom13121712.
peripheral nerve repair and regeneration: beyond the hollow
nerve guidance conduit. Front Bioeng Biotechnol. 2019;7:337. 76. Zhang M, An H, Wan T, et al. Micron track chitosan conduit
doi: 10.3389/fbioe.2019.00337 fabricated by 3D-printed model topography provides bionic
Volume 11 Issue 4 (2025) 60 doi: 10.36922/IJB025140120