Page 68 - v11i4
P. 68

International Journal of Bioprinting                                3D bioprinting of nerve guidance conduits




               doi: 10.1038/srep46038                          64.  Wang EG, Inaba K, Byerly S, et al. Optimal timing for repair
                                                                  of peripheral nerve injuries. J Trauma Acute Care Surg.
            53.  Clark P, Connolly P, Curtis SG, Dow JAT, Wilkinson CDW.
               Topographical control of cell behavior: I. Simple step cues.   2017;83(5):875-881.
               Development. 1987;99(3):439-448.                   doi: 10.1097/TA.0000000000001570
               doi: 10.1242/dev.99.3.439.                      65.  Wu GG, Wen XY, Kuang R, et al. Roles of macrophages and
               https://webofscience.clarivate.cn/wos/alldb/full-record/  their interactions with schwann cells after peripheral nerve
               WOS:A1987G384800014                                injury. Cell Mol Neurobiol. 2023;44(1):11.
            54.  Miller C, Jeftinija S, Mallapragada S. Synergistic effects of      doi: 10.1007/s10571-023-01442-5
               physical and chemical guidance cues on neurite alignment   66.  Gezercan Y, Menekse G, Ökten AI, et al. The outcomes of
               and outgrowth on biodegradable polymer substrates. Tissue   late term surgical treatment of penetrating peripheral nerve
               Eng. 2002;8(3):367-378.                            injuries. Turk Neurosurg. 2026;26(1):146-152.
               doi: 10.1089/107632702760184646                    doi: 10.5137/1019-5149.JTN.14094-15.1 
            55.  Schmalenberg KE, Uhrich KE. Micropatterned polymer   67.  Vijayavenkataraman S. Nerve guide conduits for peripheral
               substrates control alignment of proliferating Schwann   nerve injury repair: A review on design, materials and
               cells to direct neuronal regeneration.  Biomaterials.   fabrication methods. Acta Biomaterialia. 2020;106:54-69,
               2005;26(12):1423-1430.                             doi: 10.1016/j.actbio.2020.02.003
               doi: 10.1016/j.biomaterials.2004.04.046
                                                               68.  Satchanska G, Davidova S, Petrov PD. Natural and synthetic
            56.  Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK.   polymers for biomedical and environmental applications.
               Synergistic effects of micropatterned biodegradable conduits   Polymer. 2024;16(8):1159.
               and Schwann cells on sciatic nerve regeneration. J Neural      doi: 10.3390/polym16081159
               Eng. 2004;1(3):151-157.
               doi: 10.1088/1741-2560/1/3/004                  69.  Ciardelli G, Chiono V. Materials for peripheral nerve
                                                                  regeneration. Macromol Biosci. 2006;6(1):13-26.
            57.  Davis B, Wojtalewicz S, Labroo P, et al. Controlled release      doi: 10.1002/mabi.200500151
               of  FK506  from  micropatterned  PLGA  films:  potential  for
               application in peripheral nerve repair.  Neural Regen Res.   70.  Chiono V,  Tonda‐Turo C, Ciardelli G. Artificial scaffolds
               2018;13(7):1247-1252.                              for peripheral nerve reconstruction.  Int Rev Neurobiol.
               doi: 10.4103/1673-5374.235063                      2009;87:173-198.
                                                                  doi: 10.1016/S0074-7742(09)87009-8
            58.  Yu X, Zhang DT, Liu C, et al. Micropatterned poly(D,
               L-lactide-co-caprolactone) conduits with KHI-peptide and   71.  Gu XS, Ding F, Yang YM, Liu J. Construction of tissue
               NGF promote peripheral nerve repair after severe traction   engineered nerve grafts and their application in peripheral
               injury. Front Bioeng Biotechnol. 2021;9:744230.    nerve regeneration. Prog Neurobiol. 2011;93(2):204-230.
               doi: 10.3389/fbioe.2021.744230                     doi: 10.1016/j.pneurobio.2010.11.002
            59.  Bolleboom A, de Ruiter GCW, Coert JH, Tuk B, Holstege JC,   72.  Benowitz LI, Popovich PG. Inflammation and axon
               van Neck JW. Novel experimental surgical strategy to prevent   regeneration. Curr Opin Neurol. 2011;24(6):577-583.
               traumatic neuroma formation by combining a 3D-printed      doi: 10.1097/WCO.0b013e32834c208d
               Y-tube with an autograft. Lab Invest. 2019;130(1):184-196.  73.  Zhao YH, Wang YJ, Gong JH, et al. Chitosan degradation
               doi: 10.3171/2017.8.JNS17276                       products facilitate peripheral nerve regeneration by
            60.  Zhang J, Tao J, Cheng H, et al. Nerve transfer with 3D-printed   improving  macrophage-constructed microenvironments.
               branch nerve Conduits. Burns Trauma. 2022;10:tkac010.  Biomaterials. 2017;134:64-77.
               doi: 10.1093/burnst/tkac010                        doi: 10.1016/j.biomaterials.2017.02.026
            61.  Hu Y, Wu Y, Gou ZY, et al. 3D-engineering of cellularized   74.  Nawrotek K, Kubicka M, Gatkowska J, et. al. Controlling the
               conduits for peripheral nerve regeneration.  Sci Rep.   spatiotemporal release of nerve growth factor by chitosan/
               2016;6:32184.                                      polycaprolactone conduits for use in peripheral nerve
               doi: 10.1038/srep32184                             regeneration. Int J Mol Sci. 2022;23(5):2852.
                                                                  doi: 10.3390/ijms23052852.
            62.  Johnson BN, Lancaster KZ, Zhen GH, et al. 3D printed
               anatomical nerve regeneration pathways. Adv Funct Mater.   75.  Bianchini M, Zinno C, Micera S, Riva ER. Improved
               2015;25(39):6205-6217.                             physiochemical properties of chitosan@PCL nerve
               doi: 10.1002/adfm.201501760                        conduits by natural molecule crosslinking.  Biomolecules.
                                                                  2023;13(12):1712.
            63.  Carvalho CR, Oliveira JM, Reis RL. Modern trends for      doi: 10.3390/biom13121712.
               peripheral nerve repair and regeneration: beyond the hollow
               nerve guidance conduit. Front Bioeng Biotechnol. 2019;7:337.  76.  Zhang M, An H, Wan T, et al. Micron track chitosan conduit
               doi: 10.3389/fbioe.2019.00337                      fabricated by 3D-printed model topography provides bionic


            Volume 11 Issue 4 (2025)                        60                            doi: 10.36922/IJB025140120
   63   64   65   66   67   68   69   70   71   72   73