Page 69 - v11i4
P. 69
International Journal of Bioprinting 3D bioprinting of nerve guidance conduits
microenvironment for peripheral nerve regeneration. Int J 87. Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O. Natural
Bioprinting. 2023;9(5):770. composite dressings based on collagen, gelatin and plant
doi: 10.18063/ijb.770 bioactive compounds for wound healing: A review. Int J Biol
Macromol. 2019;138:854-865.
77. Yi BC, Zhang HL, Yu ZP, Yuan HH, Wang XL, Zhang YZ.
Fabrication of high performance silk fibroin fibers via stable doi: 10.1016/j.ijbiomac.2019.07.155
jet electrospinning for potential use in anisotropic tissue 88. Ulubayram K, Aksu E, Gurhan SID, Serbetci K, Hasirci N.
regeneration. J Mater Chem B. 2018;6(23):3934-3945. Cytotoxicity evaluation of gelatin sponges prepared with
doi: 10.1039/c8tb00535d different cross-linking agents. J Biomater Sci-Polym Ed.
2022;13(11):1203-1219.
78. Chen ZY, Zhang Q, Li HM, Wei Q, Zhao X, Chen FL. doi: 10.1163/156856202320892966
Elastin-like polypeptide modified silk fibroin porous
scaffold promotes osteochondral repair. Bioact Mater. 89. Sultana S, Khan RA, Shahruzzaman M, Khan MA, Mustafa
2021;6(3):589-601. AI, Gafur MA. Effect of gamma radiation on the physico-
doi: 10.1016/j.bioactmat.2020.09.003 and thermo-mechanical properties of gelatin-based films
using 2-hydroxyethyl methacrylate (HEMA). Polym Plast
79. Nguyen TP, Nguyen QV, Nguyen VH, et al. Silk fibroin- Technol Eng. 2010;49(7):662-671.
based biomaterials for biomedical applications: a review. doi: 10.1080/03602551003681804
Polymers. 2019;11(12):1933.
doi: 10.3390/polym11121933 90. Le HR, Natesan K, Pranti-Haran S. Mechanical property and
biocompatibility of co-precipitated nano hydroxyapatite-
80. Dinis TM, Elia R, Vidal G, et al. 3D multi-channel bi- gelatine composites. J Adv Ceram. 2015;4(3):237-243.
functionalized silk electrospun conduits for peripheral nerve doi: 10.1007/s40145-015-0155-z
regeneration. J Mech Behav Biomed Mater. 2015;41:43-55.
doi: 10.1016/j.jmbbm.2014.09.029 91. Sergi R, Bellucci D, Cannillo V. A review of bioactive glass/
natural polymer composites: state of the art. Materials.
81. Zhao YH, Liang YY, Ding SP, Zhang KY, Mao HQ, Yang 2020;13(23):13235560.
YM. Application of conductive PPy/SF composite scaffold doi: 10.3390/ma13235560
and electrical stimulation for neural tissue engineering.
Biomaterials. 2020;255:120164. 92. Gong H, Fei H, Xu Q, Guo M, Chen HH. 3D-engineered
doi: 1016/j.biomaterials.2020.120164 GelMA conduit filled with ECM promotes regeneration of
peripheral nerve. J Biomed Mater Res Part A. 2020;108A:3.
82. Wang Y, Ge Y, Yao K, Zhang L, Yang Y. Repair of sciatic doi: 10.1002/jbm.a.36859
nerve injury in rats by composite filipin conduit. J Nantong
Univ Med Ed. 2021;41(03):207-211. 93. Tao J, Zhang JM, Du T, et al. Rapid 3D printing of functional
https://caod.oriprobe.com/articles/61847006/Repair_ nanoparticle-enhanced conduits for effective nerve repair.
study_of_sciatic_nerve_injury_in_rats_with_combined_ Acta Biomater. 2019;90:49-59.
silk_fibroi.htm doi: 10.1016/j.actbio.2019.03.047
83. Zhao YH, Niu CM, Shi JQ, Wang YY, Yang YM, Wang HB. 94. Liu JY, Zhang B, Li L, Yin J, Fu JZ. Additive-lathe 3D
Novel conductive polypyrrole/silk fibroin scaffold for neural bioprinting of bilayered nerve conduits incorporated with
tissue repair. Neural Regen Res. 2018;13(8):1455-1464. supportive cells. Bioact Mater. 2021;6(1):219-229.
doi: 10.4103/1673-5374.235303 doi: 10.1016/j.bioactmat.2020.08.010
84. Fujimaki H, Uchida K, Inoue G, et al. Oriented collagen 95. Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur
tubes combined with basic fibroblast growth factor promote P. Degradable polymeric bio(nano)materials and their
peripheral nerve regeneration in a 15 mm sciatic nerve defect biomedical applications: a comprehensive overview and
rat model. J Biomed Mater Res Part A. 2017;105(1):8-14. recent updates. Polymers. 2024;16(2):206.
doi: 10.1002/jbm.a.35866 doi: 10.3390/polym16020206
96. Evans GRD, Brandt K, Widmer MS, et al. In vivo evaluation
85. Yoo J, Park JH, Kwon YW, et al. Augmented peripheral
nerve regeneration through elastic nerve guidance conduits of poly(L-lactic acid) porous conduits for peripheral nerve
prepared using a porous PLCL membrane with a 3D printed regeneration. Biomaterials. 1999;20(12):1109-1115.
collagen hydrogel. Biomater Sci. 2020;8(22):6261. doi: 10.1016/S0142-9612(99)00010-1
doi: 10.1039/d0bm00847h. 97. Cai J, Peng XJ, Nelson KD, Nelson KD, Eberhart R, Smith
86. Chen C, Xu HH, Liu XY, et al. 3D printed collagen/ GM. Permeable guidance channels containing microfilament
silk fibroin scaffolds carrying the secretome of human scaffolds enhance axon growth and maturation. J Biomed
umbilical mesenchymal stemcells ameliorated neurological Mater Res Part A. 2005;75A(2):374-386.
dysfunction after spinal cord injury in rats. Regen Biomater. doi: 10.1002/jbm.a.30432
2022;9:rbac014. 98. Jahromi HK, Farzin A, Hasanzadeh E, et al. Enhanced sciatic
doi: 10.1093/rb/rbac014 nerve regeneration by poly-L-lactic acid/multi-wall carbon
Volume 11 Issue 4 (2025) 61 doi: 10.36922/IJB025140120