Page 72 - v11i4
P. 72

International Journal of Bioprinting                                3D bioprinting of nerve guidance conduits




            142. Arcaute  K,  Mann  BK,  Wicker  RB.  Fabrication  of  off-the-     doi: 10.1016/j.apmt.2019.05.014
               shelf  multilumen  poly(ethylene  glycol)  nerve  guidance   154. Tao J, Liu HF, Wu WB, et al. 3D-printed nerve conduits with
               conduits using stereolithography. Tissue Eng Part C-Methods.   live platelets for effective peripheral nerve repair. Adv Funct
               2010;17(1):27-38.                                  Mater. 2020;30(42):2004272.
               doi: 10.1089/ten.tec.2010.0011
                                                                  doi: 10.1002/adfm.202004272
            143. Evangelista MS, Perez M, Salibian AA, et al. Single-lumen and   155. Ye WS, Li HB, Yu K, et al. 3D printing of gelatin methacrylate-
               multi-lumen poly(ethylene glycol) nerve conduits fabricated   based nerve guidance conduits with multiple channels.
               by stereolithography for peripheral nerve regeneration in   Mater Des. 2020;192:108757.
               vivo. J Reconstr Microsurg. 2015;31(5):327-335.     doi: 10.1016/j.matdes.2020.108757
               doi: 10.1055/s-0034-1395415
                                                               156. Huang WJ, Wang JE. Development of 3D-printed,
            144. Farzan A, Borandeh S, Seppälä J. Conductive polyurethane/  biodegradable, conductive PGSA composites for nerve
               PEGylated graphene oxide composite for 3D-printed nerve   tissue regeneration. Macromol Biosci. 2023;23(3):2200470.
               guidance conduits. Eur Polym J. 2022;167:111068.     doi: 10.1002/mabi.202200470
               doi: 10.1016/j.eurpolymj.2022.111068
                                                               157. Wu WB, Dong YC, Liu HF, et al. 3D printed elastic hydrogel
            145. Perez MA. Manufacturing nerve guidance conduits by   conduits with 7,8-dihydroxyflavone release for peripheral
               stereolithography for use in peripheral nerve regeneration.   nerve repair. Mater Today Bio. 2023;20:100652.
               The University of Texas at El Paso ProQuest Dissertations &      doi: 10.1016/j.mtbio.2023.100652
               Theses. 2013;1551240
               https://scholarworks.utep.edu/dissertations/AAI1551240  158. Bedir T, Ulag S, Ustundag CB, Gunduz O. 3D bioprinting
                                                                  applications in  neural  tissue  engineering  for  spinal
            146. Singh A, Asikainen S, Teotia AK, et al. Biomimetic   cord  injury  repair. Mater Sci Eng C-Mater Biol Appl.
               photocurable three-dimensional printed nerve guidance   2020;110:110741.
               channels with aligned cryomatrix lumen for peripheral      doi: 10.1016/j.msec.2020.110741
               nerve  regeneration.  ACS  Appl  Mater  Interfaces.
               2018;10(50):43327-43342.                        159. Cadena M, Ning LQ, King A, et al. 3D bioprinting of neural
               doi: 10.1021/acsami.8b11677                        tissues. Adv Healthc Mater. 2020;10(15):2001600.
                                                                  doi: 10.1002/adhm.202001600
            147. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers
               for 3D printing and customized additive manufacturing.   160. Zhuang P, Ng WL, An J, Chua CK, Tan LP. Layer-by-layer
               Chem Rev. 2017;117(15):10212-10290.                ultraviolet assisted extrusion-based (UAE) bioprinting
               doi: 10.1021/acs.chemrev.7b00074                   of hydrogel constructs with high aspect ratio for soft
                                                                  tissue engineering applications.  PloS One. 2019;14(6):
            148. Wu Y, Su H, Li M, Xing HY. Digital light processing-  0216776.
               based multi-material bioprinting: processes, applications,      doi: 10.1371/journal.pone.0216776
               and perspectives.  J Biomed Mater Res Part A.
               2023;111(4):527-542.                            161. Zhu  W,  Qu  X,  Zhu  J,  et  al.  Direct  3D  bioprinting
               doi: 10.1002/jbm.a.37473                           of prevascularized tissue constructs with complex
                                                                  microarchitecture. Biomaterials. 2017;124:106-115.
            149. Zhang JM, Hu QP, Wang S, Tao J, Gou ML. Digital light      doi: 10.1016/j.biomaterials.2017.01.042
               processing based three-dimensional printing for medical
               applications. Int J Bioprinting. 2020;6(1):12-27.  162.  Vijayavenkataraman S, Vialli N, Fuh JYH, Lu WF.
               doi: 10.18063/ijb.v6i1.242                         Conductive    collagen/polypyrrole-b-polycaprolactone
                                                                  hydrogel for bioprinting of neural tissue constructs.  Int J
            150. Wajdi F, Tontowi AE. 3D printed stent from graphene-  Bioprinting. 2020;6(4):309.
               polyethylene glycol diacrylate using digital light processing      doi: 10.18063/ijb.v5i2.1.229
               technique. Manag Syst Prod Eng. 2024;32(4):555-562.
               doi: 10.2478/mspe-2024-0053.                    163. Kaplan B, Merdler U, Szklanny AA, et al. Rapid prototyping
                                                                  fabrication of soft and oriented polyester scaffolds for axonal
            151. Li H, Dai J, Wang Z, Zheng H, Li W, Wang M. Digital light   guidance. Biomaterials. 2020;251:120062.
               processing (DLP)-based (bio)printing strategies for tissue      doi: 10.1016/j.biomaterials.2020.120062
               modeling and regeneration. Aggregate. 2023;4(2):270.  164. Redolfi-Riva E, Pérez-Izquierdo M, Zinno C, et al. A novel
               doi: 10.1002/agt2.270
                                                                  3D-printed/porous conduit with tunable properties to
            152. Lee SJ, Esworthy T, Stake S, et al. Advances in 3D bioprinting   enhance nerve regeneration over the limiting gap length.
               for neural tissue engineering. Adv Biosyst. 2018;2(4):1700213.  Adv Mater Technol. 2023;8(17):2300136.
               doi: 10.1002/adbi.201700213                        doi: 10.1002/admt.202300136
            153. Xu X, Tao J, Wang S, et al. 3D printing of nerve conduits with   165. Englanda S, Rajaramb A, Schreyer DJ, Chen XB.
               nanoparticle-encapsulated RGFP966.  Appl Mater Today.   Bioprinted  fibrin-factor  XIII-hyaluronate  hydrogel
               2019;16:247-256.                                   scaffolds with encapsulated Schwann cells and their in vitro


            Volume 11 Issue 4 (2025)                        64                            doi: 10.36922/IJB025140120
   67   68   69   70   71   72   73   74   75   76   77