Page 72 - v11i4
P. 72
International Journal of Bioprinting 3D bioprinting of nerve guidance conduits
142. Arcaute K, Mann BK, Wicker RB. Fabrication of off-the- doi: 10.1016/j.apmt.2019.05.014
shelf multilumen poly(ethylene glycol) nerve guidance 154. Tao J, Liu HF, Wu WB, et al. 3D-printed nerve conduits with
conduits using stereolithography. Tissue Eng Part C-Methods. live platelets for effective peripheral nerve repair. Adv Funct
2010;17(1):27-38. Mater. 2020;30(42):2004272.
doi: 10.1089/ten.tec.2010.0011
doi: 10.1002/adfm.202004272
143. Evangelista MS, Perez M, Salibian AA, et al. Single-lumen and 155. Ye WS, Li HB, Yu K, et al. 3D printing of gelatin methacrylate-
multi-lumen poly(ethylene glycol) nerve conduits fabricated based nerve guidance conduits with multiple channels.
by stereolithography for peripheral nerve regeneration in Mater Des. 2020;192:108757.
vivo. J Reconstr Microsurg. 2015;31(5):327-335. doi: 10.1016/j.matdes.2020.108757
doi: 10.1055/s-0034-1395415
156. Huang WJ, Wang JE. Development of 3D-printed,
144. Farzan A, Borandeh S, Seppälä J. Conductive polyurethane/ biodegradable, conductive PGSA composites for nerve
PEGylated graphene oxide composite for 3D-printed nerve tissue regeneration. Macromol Biosci. 2023;23(3):2200470.
guidance conduits. Eur Polym J. 2022;167:111068. doi: 10.1002/mabi.202200470
doi: 10.1016/j.eurpolymj.2022.111068
157. Wu WB, Dong YC, Liu HF, et al. 3D printed elastic hydrogel
145. Perez MA. Manufacturing nerve guidance conduits by conduits with 7,8-dihydroxyflavone release for peripheral
stereolithography for use in peripheral nerve regeneration. nerve repair. Mater Today Bio. 2023;20:100652.
The University of Texas at El Paso ProQuest Dissertations & doi: 10.1016/j.mtbio.2023.100652
Theses. 2013;1551240
https://scholarworks.utep.edu/dissertations/AAI1551240 158. Bedir T, Ulag S, Ustundag CB, Gunduz O. 3D bioprinting
applications in neural tissue engineering for spinal
146. Singh A, Asikainen S, Teotia AK, et al. Biomimetic cord injury repair. Mater Sci Eng C-Mater Biol Appl.
photocurable three-dimensional printed nerve guidance 2020;110:110741.
channels with aligned cryomatrix lumen for peripheral doi: 10.1016/j.msec.2020.110741
nerve regeneration. ACS Appl Mater Interfaces.
2018;10(50):43327-43342. 159. Cadena M, Ning LQ, King A, et al. 3D bioprinting of neural
doi: 10.1021/acsami.8b11677 tissues. Adv Healthc Mater. 2020;10(15):2001600.
doi: 10.1002/adhm.202001600
147. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers
for 3D printing and customized additive manufacturing. 160. Zhuang P, Ng WL, An J, Chua CK, Tan LP. Layer-by-layer
Chem Rev. 2017;117(15):10212-10290. ultraviolet assisted extrusion-based (UAE) bioprinting
doi: 10.1021/acs.chemrev.7b00074 of hydrogel constructs with high aspect ratio for soft
tissue engineering applications. PloS One. 2019;14(6):
148. Wu Y, Su H, Li M, Xing HY. Digital light processing- 0216776.
based multi-material bioprinting: processes, applications, doi: 10.1371/journal.pone.0216776
and perspectives. J Biomed Mater Res Part A.
2023;111(4):527-542. 161. Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting
doi: 10.1002/jbm.a.37473 of prevascularized tissue constructs with complex
microarchitecture. Biomaterials. 2017;124:106-115.
149. Zhang JM, Hu QP, Wang S, Tao J, Gou ML. Digital light doi: 10.1016/j.biomaterials.2017.01.042
processing based three-dimensional printing for medical
applications. Int J Bioprinting. 2020;6(1):12-27. 162. Vijayavenkataraman S, Vialli N, Fuh JYH, Lu WF.
doi: 10.18063/ijb.v6i1.242 Conductive collagen/polypyrrole-b-polycaprolactone
hydrogel for bioprinting of neural tissue constructs. Int J
150. Wajdi F, Tontowi AE. 3D printed stent from graphene- Bioprinting. 2020;6(4):309.
polyethylene glycol diacrylate using digital light processing doi: 10.18063/ijb.v5i2.1.229
technique. Manag Syst Prod Eng. 2024;32(4):555-562.
doi: 10.2478/mspe-2024-0053. 163. Kaplan B, Merdler U, Szklanny AA, et al. Rapid prototyping
fabrication of soft and oriented polyester scaffolds for axonal
151. Li H, Dai J, Wang Z, Zheng H, Li W, Wang M. Digital light guidance. Biomaterials. 2020;251:120062.
processing (DLP)-based (bio)printing strategies for tissue doi: 10.1016/j.biomaterials.2020.120062
modeling and regeneration. Aggregate. 2023;4(2):270. 164. Redolfi-Riva E, Pérez-Izquierdo M, Zinno C, et al. A novel
doi: 10.1002/agt2.270
3D-printed/porous conduit with tunable properties to
152. Lee SJ, Esworthy T, Stake S, et al. Advances in 3D bioprinting enhance nerve regeneration over the limiting gap length.
for neural tissue engineering. Adv Biosyst. 2018;2(4):1700213. Adv Mater Technol. 2023;8(17):2300136.
doi: 10.1002/adbi.201700213 doi: 10.1002/admt.202300136
153. Xu X, Tao J, Wang S, et al. 3D printing of nerve conduits with 165. Englanda S, Rajaramb A, Schreyer DJ, Chen XB.
nanoparticle-encapsulated RGFP966. Appl Mater Today. Bioprinted fibrin-factor XIII-hyaluronate hydrogel
2019;16:247-256. scaffolds with encapsulated Schwann cells and their in vitro
Volume 11 Issue 4 (2025) 64 doi: 10.36922/IJB025140120