Page 70 - v11i4
P. 70
International Journal of Bioprinting 3D bioprinting of nerve guidance conduits
nanotube neural guidance conduit containing Schwann cells doi: 10.1038/s41467-017-02598-7
and curcumin encapsulated chitosan nanoparticles in rat. 109. Luis AL, Rodrigues JM, Amado S, et al. PLGA 90/10
Mater Sci Eng C-Mater Biol Appl. 2020;109:110564. and caprolactone biodegradable nerve guides for the
doi: 10.1016/j.msec.2019.110564
reconstruction of the rat sciatic nerve. Microsurgery.
99. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Maciel 2007;27(2):125-137.
R. Poly-lactic acid synthesis for application in biomedical doi: 10.1002/micr.20317
devices—a review. Biotechnol Adv. 2012;30(1):321-328. 110. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA)
doi: 10.1016/j.biotechadv.2011.06.019
as biodegradable controlled drug delivery carrier. Polymers.
100. Gerdefaramarzi RS, Ebrahimian-Hosseinabadi M, 2011;3(3):1377-1397.
Khodaei M. 3D printed poly(lactic acid)/poly(ε- doi: 10.3390/polym3031377
caprolactone)/graphene nanocomposite scaffolds for 111. Ouyang YM, Huang C, Zhu Y, Fen CY, Ke QF. fabrication of
peripheral nerve tissue engineering. Arab J Chem. 2024; seamless electrospun collagen/PLGA conduits whose walls
17(9):105927. comprise highly longitudinal aligned nanofibers for nerve
doi: 10.1016/j.arabjc.2024.105927
regeneration. J Biomed Nanotechnol. 2013;9(6):931-943.
101. Wang XD, Hu W, Cao Y, Yao J, Wu J, Gu XS. Dog sciatic nerve doi: 10.1166/jbn.2013.1605
regeneration across a 30-mm defect bridged by a chitosan/ 112. Namhongsa M, Daranarong D, Sriyai M, et al. Surface-
PGA artificial nerve graft. Brain. 2005;128(8):1897-1910. modified polypyrrole-coated PLCL and PLGA nerve guide
doi: 10.1093/brain/awh517
conduits fabricated by 3D printing and electrospinning.
102. Yue HX, Liu XZ, Hou KJ, Vyas C, Bartolo P. Stereolithography Biomacromolecules. 2022;23(11):4532-4546.
3D printing of microgroove master moulds for topography- doi: 10.1021/acs.biomac.2c00626
induced nerve guidance conduits. Int J Bioprinting. 113. Lackington WA, Kocí Z, Alekseeva T, et al. Controlling the
2024;10(3):2725. dose-dependent, synergistic and temporal effects of NGF
doi: 10.36922/ijb.2725
and GDNF by encapsulation in PLGA microparticles for use
103. Zheng CS, Yang ZH, Chen SH, et al. Nanofibrous in nerve guidance conduits for the repair of large peripheral
nerve guidance conduits decorated with decellularized nerve defects. J Control Release. 2019;304:51-64.
matrix hydrogel facilitate peripheral nerve injury repair. doi: 10.1016/j.jconrel.2019.05.001
Theranostics. 2021;11(6):2917-2931.
doi: 10.7150/thno.50825 114. Berkovitch Y, Cohen T, Peled E, et al. Hydrogel composition
and laser micropatterning to regulate sciatic nerve
104. Sachan R, Warkar SG, Purwar R. An overview on synthesis, regeneration. Tissue Eng Regen Med. 2017;12(4):1049-1061.
properties and applications of polycaprolactone copolymers, doi: 10.1002/term.2606
blends & composites. Polym Plast Technol Mater.
2022;62(3):327-358. 115. Seiti M, Degryse O, Ferraro RM, Giliani S, Bloemen V, et al.
®
doi: 10.1080/25740881.2022.2113890 3D Aerosol Jet printing for microstructuring: Advantages
and limitations. Int J Bioprinting. 2023;9(6): 0257.
105. Xu PW, Tan S, Niu DY, et al. Effect of temperatures on stress- doi: 10.36922/ijb.0257
induced structural evolution and mechanical behaviors
of polyglycolic acid/polycaprolactone blends. Polymer. 116. Berkovitch Y, Yelin D, Seliktar D. Photo-patterning PEG-
2023;283:126239. based hydrogels for neuronal engineering. Eur Polym J.
doi: 10.1016/j.polymer.2023.126239 2015;72:473-483.
doi: 10.1016/j.eurpolymj.2015.07.014
106. Zhu L, Jia SJ, Liu TJ, et al. Aligned PCL fiber conduits
immobilized with nerve growth factor gradients enhance 117. Zhu H, Yao C, Wei BY, et al. 3D printing of functional
and direct sciatic nerve regeneration. Adv Funct Mater. bioengineered constructs for neural regeneration: a review.
2020;30(39):2002610. Int J Extreme Manuf. 2023;5(4):042004.
doi: 10.1002/adfm.202002610 doi: 10.1088/2631-7990/ace56c.
118. Li JX, Wu ZW, Zhao L, et al. The heterogeneity of
107. Chen CC, Yu J, Ng HY, et al. The physicochemical properties
of decellularized extracellular matrix coated 3D printed mesenchymal stem cells: an important issue to be addressed
poly(ε-caprolactone) nerve conduits for promoting in cell therapy. Stem Cell Res Ther. 2023;14(1):381.
schwann cells proliferation and differentiation. Materials. doi: 10.1186/s13287-023-03587-y
2018;11(9):1665. 119. Andreotti JP, Silva WN, Costa AC, et al. Neural stem cell
doi: 10.3390/ma11091665 niche heterogeneity. Semin Cell Dev Biol. 2019;14(95):42-53.
doi: 10.1016/j.semcdb.2019.01.005
108. Qian Y, Zhao XT, Han QX, Chen W, Li H, Yuan WE. An
integrated multi-layer 3D-fabrication of PDA/RGD coated 120. Ding F, Wu JA, Yang YM, et al. Use of tissue-engineered nerve
graphene loaded PCL nanoscaffold for peripheral nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid)-
restoration. Nat Commun. 2018;9(1):323. based scaffold included with bone marrow mesenchymal
Volume 11 Issue 4 (2025) 62 doi: 10.36922/IJB025140120