Page 38 - IJOCTA-15-1
P. 38
S. Ben Hanachi, B. Sellami, M. Belloufi / IJOCTA, Vol.15, No.1, pp.25-34 (2025)
Conflict of interest [8] Fletcher, R., & Reeves, C. M. (1964). Function
minimization by conjugate gradients. The com-
The authors declare no conflict of interest. puter journal, 7(2), 149-154. https://doi.org/
10.1093/comjnl/7.2.149
Author contributions [9] Salleh, Z., & Alhawarat, A. (2016). An effi-
cient modification of the Hestenes-Stiefel nonlin-
Conceptualization: Badreddine Sellami ear conjugate gradient method with restart prop-
Formal analysis: Sabrina Ben Hanachi erty. Journal of Inequalities and Applications,
Methodology: Mohammed Belloufi 110. https://doi.org/10.1186/s13660-016
-1049-5
Writing – original draft: Sabrina Ben Banachi
[10] Wei, Z., Li, G., and Qi, L. (2006). New nonlinear
Writing – review & editing: Sabrina Ben Hanachi
conjugate gradient formulas for large-scale uncon-
strained optimization problems. Applied Mathe-
matics and Computation, 179(2), 407-430. https:
Availability of data //doi.org/10.1016/j.amc.2005.11.150
[11] Yuan, G., Wei, Z., & Zhao, Q. (2014). A modi-
The data that support the findings of this study fied Polak–Ribi´ere–Polyak conjugate gradient al-
are available from the corresponding author upon gorithm for large-scale optimization problems.
reasonable request. IIE Transactions, 46(4), 397-413. https://doi.
org/10.1080/0740817X.2012.726757
[12] Wolfe, P. (1969). Convergence conditions for as-
References
cent methods. Society for Industrial and Applied
[1] Liu, J. K., & Li, S. J. New hybrid conjugate Mathematics Review, 11(2), 226-235. https://do
gradient method for unconstrained optimization. i.org/10.1137/1011036
(2014). Applied Mathematics and Computation, [13] Wolfe, P. (1971). Convergence conditions for as-
245, 36-43. https://doi.org/10.1016/j.amc. cent methods. II: Some corrections. Society for In-
2014.07.096 dustrial and Applied Mathematics review, 13(2),
[2] Luo, C., Wang, L., Xie, Y., & Chen, B. (2024). A 185-188. https://doi.org/10.1137/1013035
new conjugate gradient method for moving force [14] Dai, Y. H., Yuan, Y. (1999). A nonlinear conju-
identification of vehicle-bridge system. Journal of gate gradient method with a strong global conver-
Vibration Engineering & Technologies, 12(1), 19- gence property. Society for Industrial and Applied
36. https://doi.org/10.1007/s42417-022-0 Mathematics Journal on optimization, 10(1), 177-
0824-1 182. https://doi.org/10.1137/S10526234973
[3] Yuan, Y., Tsang, D. H., & Lau, V. K. (2024). 18992
Combining Conjugate Gradient and Momentum [15] Liu, Y., & Storey, C. (1991). Efficient generalized
for Unconstrained Stochastic Optimization With conjugate gradient algorithms, Part 1: Theory.
Applications to Machine Learning. IEEE Internet Journal of Optimization Theory and Applications,
of Things Journal. 69, 129-137. https://doi.org/10.1007/BF0094
[4] Hanachi, S. B., Sellami, B., & Belloufi, M. 0464
(2024). A new family of hybrid conjugate gradi- [16] Ibrahim, S. M., Yakubu, U. A., & Mamat, M.
ent method for unconstrained optimization and (2020). Application of spectral conjugate gradi-
its application to regression analysis. RAIRO- ent methods for solving unconstrained optimiza-
Operations Research. 58(1), 613-627 https://do tion problems. An International Journal of Op-
i.org/10.1051/ro/2023196 timization and Control: Theories & Applications
[5] Jiang, X., Pan, L., Liu, M., & Jian, J. (2024). A (IJOCTA), 10(2), 198-205. https://doi.org/10
family of spectral conjugate gradient method with .11121/ijocta.01.2020.00859
strong convergence and its applications in image [17] Kaelo, P., Narayanan, S., & Thuto, M. V.
restoration and machine learning. Journal of the (2017). A modified quadratic hybridization of
Franklin Institute, 107033. https://doi.org/10 Polak-Ribiere-Polyak and Fletcher-Reeves conju-
.1016/j.jfranklin.2024.107033 gate gradient method for unconstrained optimiza-
[6] Balaram, B., Narayanan, M. D., & Rajendraku- tion problems. An International Journal of Opti-
mar, P. K. (2012). Optimal design of multi- mization and Control: Theories & Applications
parametric nonlinear systems using a parametric (IJOCTA), 7(2), 177-185. https://doi.org/10
continuation based genetic algorithm approach. .11121/ijocta.01.2017.00339
Nonlinear Dynamics, 67(4), 2759-2777. https: [18] Belloufi, M., Rachid, B., & Yamina, L. (2013).
//doi.org/10.1007/s11071-011-0187-z Modi cation of the Armijo line search to satisfy
[7] Hestenes, M. R., & Stiefel, E. (1952). Methods of the convergenceproperties of HS method. An In-
Conjugate Gradients for Solving. Journal of Re- ternational Journal of Optimization and Control:
search of the National Bureau of Standards, 49(1), Theories & Applications (IJOCTA), 3(2), 145-
409-436. https://doi.org/10.6028/jres.049 152. https://doi.org/10.11121/ijocta.01
.044 .2013.00141
32

