Page 36 - IJOCTA-15-2
P. 36

Analyzing the Black-Scholes equation with fractional coordinate derivatives using . . .
                By multiplying 2λ on both sides of Eq. (33),  where i = 0, 1, 2, · · · , M x and n = 1, 2, · · · , N t .
                                                                                             β
            we have                                           Now, for n = 1 and considering b = 1, we have
                                                                                             0

                              n−1                            (Ω + Ψ)U     + (1 + 2Ω + Φ)U + (−Ω − Ψ)U
                                                                   1                  1              1
             β    n    n−1    X     β       β       l   l−1            i−1                 i             i+1
            b   U + U       −      b     − b      U + U
             0   i     i            n−l−1   n−l    i    i                   0                    0
                              l=1                              = (−Ω − Ψ)U  i−1  + (−1 − 2Ω − Φ)U i

                          Aλ                                                              1
                 β    0         n       n    n      n−1                   0       0
             − 2b n−1 i   h 2  U i+1  − 2U − U i−1  + U i+1    + (Ω + Ψ)U i+1  + 2U + 2λf ,
                    U =
                                                                                          2
                                       i
                                                                                  i
                                                                                         i
                                                              i = 0, 1, 2, · · · , M x .
                                Gλ    n      n     n−1
                  n−1
                         n−1
             − 2U    − U    ) +     U    − U    + U
                 i       i−1          i+1   i−1    i+1                                                   (42)
                                2h

                             n
                                              n
             − U n−1 ) − Hλ U + U  n−1  + λ f + f  n−1  ,                                  n       n
                i−1          i    i           i    i          Given the initial conditions U 0  and U M x  in Eq.
                                                       (38)   (36), we will have the following matrix form:
                where i    =    0, 1, 2, · · · , M x  and n  =        1              0       1     1
                                                                  ΛU = (−Λ + 2I) U + 2λF + M ,           (43)
            1, 2, · · · , N t . For ease of display, consider the fol-
            lowing notation:
                                                              where I (M x−1)×(M x−1)  is an identity matrix and
                                    Aλ                        λ = Γ(2 − β)∆t . Moreover, Λ is a matrix of
                                                                             β
                              Ω :=    ,
                             
                                     h
                                     2                       order (M x − 1) × (M x − 1) as follows:
                             
                             
                             
                             
                             
                             
                             
                                    Gλ
                               Ψ :=     ,              (39)                    0    0    · · ·  0  0   0  
                                    2h                             µ 2 −µ 1
                             
                             
                                                                                                          
                                                                   µ    µ 2  −µ 1   0    · · ·  0  0   0
                                                                  1
                                                                                                          
                                                                                                         
                                                                  0               −µ 1 · · ·  0  0
                                                                        µ 1   µ 2                      0 
                               Φ := Hλ.                       Λ =   .    .     .     .   .    .   .       
                             
                                                                  
                                                                   . .   . .   . .   . .  .  .  . .  . .  . . 
                                                                                                        . 
                                                                                                          
                                                                   0     0     0    0    · · ·  µ 1 µ 2 −µ 1 
            Therefore                                                0    0     0    0    · · ·  0  µ 1  µ 2
             β  n        n       n    n         n      n                                               (44)
            b U − Ω U       − 2U − U      − Ψ U     − U
             0  i       i+1     i     i−1        i+1    i−1
                                                              where
                                    n−1
                           n−1
                  n
                                           n−1

             + ΦU = Ω U    i+1  − 2U i  − U i−1                            ( µ 1 := Ω + Ψ,
                  i
                                               n
             + Ψ U  n−1  − U n−1   − ΦU n−1  + λ f + f n−1                                             (45)
                    i+1    i−1       i         i    i                       µ 2 := 1 + 2Ω + Φ,
               n−1

               X     β       β       l    l−1      β    0     Ω, Ψ, and Φ are defined in Eq. (39). In addition,
             +      b     − b      U + U       + 2b   U
                     n−l−1   n−l     i    i        n−1 i
                                                                                       T
                                                                        0
                                                                            0
                                                                                   0
                                                                 0
               l=1                                            U = U , U , · · · , U M x−1  ,
                                                                           2
                                                                        1
                β  n−1                                        
                                                              
             − b U    ,                                       
                0  i                                          
                                                              
                                                              
                                                       (40)                            T
                                                              
                                                               1       1   1      1       ,
                                                              U = U , U , · · · , U
                                                              
                where i    =    0, 1, 2, · · · , M x  and n  =         1  2       M x−1
                                                              
                                                              
                                                         β
            1, 2, · · · , N t . According to the definition of b ,
                                                         l                              T
                                                                       1   1       1
                                                              
                                                                  1
            we have:                                          F = f , f , · · · , f  2    ,
                                                                        2
                                                                            2
                                                              
                                                              
                                                                       1  2       M x−1
                 β
                                                              
                b = 1. Hence, we will have                    
                 0                                            
                                                              
                                                              
                                                              
                                                              
                                                              
                                                                M = [−µ 1 (λ 0 + λ 1 ), 0, · · · , 0, µ 1 (ζ 0 + ζ1)] ,
                                                                 1                                     T
                      n
                                                        n
                                         n
             (Ω + Ψ)U i−1  + (1 + 2Ω + Φ)U + (−Ω − Ψ)U  i+1                                              (46)
                                         i
                           n−1
             = (−Ω − Ψ)U  i−1  + (−1 − 2Ω − Φ)U i n−1  + (Ω              1    f + f  0
                                                                               1
                                                                  where f  2  =  i  i  . For n ≥ 2, we have the
                                    n−1                                  i       2
                                    X
                                 0
             + Ψ)U  n−1  + 2b β  U +   (b β                   following matrix form:
                   i+1      n−1 i        n−l−1
                                    l=1
                β      l    l−1      n    n−1
             − b   )(U + U    ) + λ(f + f     ),                   n        n−1       2     n    β    0
                n−l   i    i         i    i                     ΛU = −ΛU       + 2λF + M + 2b    n−1 U
                                                       (41)
                                                                                                         (47)
                                                                  n−1

                                                                  X     β        β      l    l−1
                                                                +      b      − b      U + U      .
                                                                        n−l−1    n−l
                                                                   l=1
                                                           231
   31   32   33   34   35   36   37   38   39   40   41