Page 41 - IJOCTA-15-2
P. 41

M. M. Parsa, K. Sayevand, H. Jafari, I. Masti / IJOCTA, Vol.15, No.2, pp.225-244 (2025)
            Furthermore, the convergence of the series in the  (94)
            right side of Eq. (107) implies that                   n −iωh      n      n iωh        n−1 −iωh
                                                               µ 1 s e   + µ 2 s − µ 1 s e  = −µ 1 s  e
                                               1
                                       1
                        n
                               n
                       |r | = |R | ≤ η|R | = η|r |.   (113)
                                       i
                               i
                                                                                        n−1
                                                                                        X     β        β
                                                                                  e
                                                                − µ 2 s n−1  + µ 1 s n−1 iωh  +  b  − b
                                                                                              n−l−1    n−l
                                                                                         l=1

                                        n
                                                                                 n
                                                                    l
            Theorem 4. Suppose that E = s e         is a so-    × s + s  l−1  + r .
                                              n iωx j
                                        j
            lution of Eq. (94), then                                                                    (123)
                                       1
                                    γ|r |                     The above equation can be rewritten as:
                               n
                              |s | ≤     ,            (114)
                                    b β
                                     n−1
            where γ is a positive constant.                                           n
                                                                (µ 2 − i (2µ 1 sin(ωh))) s
                                   n
            Proof. Suppose that E = s e        is a solution    = (−µ 2 + i (2µ 1 sin(ωh))s n−1         (124)
                                         n iωx j
                                   j
            of Eq. (94), therefore                                 n−1   β      β
                                                                   X
                                                                                                    n
                                                                                        l
                                                                +      b n−l−1  − b n−l  s + s l−1  + r .
                                  n
                          n
                                             n−1
             µ 1 E n  + µ 2 E − µ 1 E i+1  = −µ 1 E i−1  − µ 2 E n−1  l=1
                 i−1
                          i
                                                       i
                                                           Assuming that R := µ 2 −i (2µ 1 sin(ωh)), we have
                         n−1
                          X    β        β            l−1
                    n−1
                                                l
             + µ 1 E   +      b      − b      E + E
                   i+1         n−l−1    n−l     i    i
                          l=1
                 n
             + R .
                 i
                                                      (115)         n   n−1      n−1   β      β
                                                                                  X
                                                                   s + s     R =       b n−l−1  − b n−l
            In the above equation, for n = 1, we have
                                                                                  l=1                   (125)
                                               1
                                1
                  µ 1 E 1  + µ 2 E − µ 1 E 1  = R .   (116)           l   l−1    n
                      i−1       i      i+1     i                  × s + s      + r .
            Therefore, from Eqs. (108) and (109)              Then
                                                1
                                1
                                       1 iωh
                    1 −iωh
                 µ 1 s e   + µ 2 s − µ 1 s e  = r ,   (117)
            or
                                                                                1  n−1
                                                                                  X
                                                                n                   β        β

                                               1
                                           1
                   µ 1 e −iωh  + µ 2 − µ 1 e iωh  s = r ,  (118)  s + s  n−1   ≤      b n−l−1  − b n−l
                                                                               |R|
                                                                                  l=1                   (126)
            which is equivalent to
                                                                      l
                                                                                     n
                                                                 × |s | + |s l−1 | + |r |.
                                         1
                                              1
                   (µ 2 − i (2µ 1 sin(ωh))) s = r .   (119)   It is clear that |R| ≥ 1. Therefore
            Assuming that R := µ 2 −i (2µ 1 sin(ωh)), we have
                                    1   1                           n     n−1    n−1   β      β
                                                                                 X
                               1
                             |s | =    |r |.          (120)       |s | + |s  | ≤      b n−l−1  − b n−l
                                   |R|
                                                                                 l=1                    (127)
            We know from the previous section that |R| ≥ 1             l    l−1     n
                                                                   × |s | + |s  | + |r |.
                  β
            and b = 1, therefore                              According to the assumption of induction (122)
                  0
                                       1   1                  and Lemma 5, we have
                            1
                                  1
                          |s | ≤ |r | =  β  |r |.     (121)
                                       b 0                              −γ        n−1
                                                                                  X
                                                                              1
                                                                   n
                                                                 |s | ≤     |r | +     b β   − b β
            Now, with the help of mathematical induction, we           b β n−2    l=1  n−l−1    n−l
                                                                     γ|r |   γ|r |            γ|r |
                                                                       1       1              1
            assume that for k = 2, 3, . . . , n − 1, the following  ×  β   +  β     + γ|r | =  β
                                                                                         1
            relation is established:                                  b l−1  b l−2            b n−1
                                    γ                                  β     n−1                     (128)
                                         1
                              k
                            |s | ≤     |r |,          (122)          −b n−1   X     β        β
                                   b β                           ×     β    +      b n−l−1  − b n−l
                                    k−1                               b n−2   l=1
            where γ = max{1, η} is a positive constant. We           β       β          !
                                                                     b       b
                                                                 ×    n−1  +  n−1  + b β   ,
                                                                                      n−1
            show that it holds for k = n as well. From Eq.            b β    b β
                                                                       l−1    l−2
                                                           236
   36   37   38   39   40   41   42   43   44   45   46