Page 38 - IJOCTA-15-2
P. 38

Analyzing the Black-Scholes equation with fractional coordinate derivatives using . . .
                Hereunder, we will show the stability of the  Hence, if x i = x L + ih, we may suppose that the
            implicit discrete scheme (41) by using the Fourier  solution of Eq. (60) has the following form:
                                                       b n
                                                    n
                                              n
            analysis method. We assume that e = |U −U |,                   n    n iωx j     2πj
                                              i
                                                         i
                                                    i
                    n
                           b n
                                                                           j
            where U and U are the approximate and exact                   e = ξ e     , ω =  D  .        (67)
                    i
                            i
            solutions of Eq. (41), respectively. In this case,  Lemma 3. In (60), we have
            we have
                                                                               2
                                                                                         2
                                                                                     2
                                                                       (2 − µ 2 ) + 4µ sin (ωh)  ≤ 1.    (68)
                                                                                     1
                                                                                      2
                                                                                  2
                                                                            2
                          n
                                                                                  1
                                                                            2
              µ 1 e n  + µ 2 e − µ 1 e n  =                                µ + 4µ sin (ωh)
                                 i+1
                          i
                 i−1
              − µ 1 e n−1  − µ 2 e n−1  + µ 1 e n−1
                    i−1      i        i+1                     Proof. By putting µ 2 = 1 + 2Ω + Φ, where
                                                                   Aλ
                                                           Ω =      and Φ = Hλ we get
                           n−1
                           X
                                                l
                       0
              + 2b β  e +      b β    − b β n−l  e + e l−1  ,      h 2
                                                i
                   n−1 i
                                                    i
                                n−l−1
                           l=1                                    µ 2 ≥ 1 =⇒ 4µ 2 ≥ 4 =⇒ 4 − 4µ 2 ≤ 0.   (69)
                                                       (60)
                                                                                                       2
                                                                                                   2
                                                                                            2
                                                              Now if we assume that S = µ + 4µ sin (ωh),
                                                                                            2
                                                                                                   1
                  n
            and e = e   n  = 0. For n = 0, 1, 2, · · · , N t , we  then S ≥ 0. Therefore
                  0
                        M x
            define a grid function as follows:                                        4 − 4µ 2 + S
                                                                 4 − 4µ 2 + S ≤ S =⇒              ≤ 1,   (70)
                                                                                           S
                                                             or
                        n
                      e ,  x ∈ (x  1 , x  1 ),                                2     2   2
                      j          j−   j+                              (2 − µ 2 ) + 4µ sin (ωh)
                                   2     2                                          1
                                                                                              ≤ 1.      (71)
                           j = 1, 2, · · · , M x − 1,                      2     2   2
              n
             e (x) =                                                       µ + 4µ sin (ωh)
                                                                                  1
                                                                            2
                     
                     
                     
                                         h         h                                     β         1−β
                       0,   x ∈ (x L , x L + ] ∪ [x R − , x R ].  Lemma 4. The coefficients b = (l + 1)
                     
                                          2         2                                     l
                                                       (61)   − (l) 1−β  apply to the following properties:
                                                                 β
                Because e n  = e n  , for e n  with the period  1. b > 0,  l = 0, 1, 2, · · · ,
                                                                 l
                          0
                                         j
                                                                                             β
                                M x
                                                                      β
                                                                           β
                                                                 β
            D = x R − x L , a periodic extension can be done.  2. b > b > b > . . . > b β n−1  > b n,
                                                                      1
                                                                           2
                                                                 0
                                                                P  n−1  β     β     β      β
            Then, using the properties of the Fourier series,  3.  l=1  (b l−1  − b ) + b n−1  = b = 1.
                                                                                           0
                                                                              l
             n
            e (x) can be written as follows:
                                                              Proof. The proof is easily done.
                       +∞       jπx
                            n 2i
               n
                       X
              e (x) =      ξ e  D , n = 0, 1, 2, · · · , N t , (62)  Theorem 3. The numerical scheme (41) for
                            j
                      j=−∞                                    solving the TFB-S model is unconditionally sta-
                                                              ble.
                          √               R          jπx
                                    n
                                        1
                                              e (x)e
                where i =   −1 and ξ =  D  0 D n    2i  D dx.                          n     n iωjh
                                    j
                                                                                       j
            We define the norm ∥.∥ h as                       Proof. We assume that e = ξ e        where i =
                                                              √
                                                                −1. Therefore, from (60), we have
                                                                µ 1 ξ e      + µ 2 ξ e   − µ 1 ξ e      =
                       v                                           n iω(j−1)h     n iωjh      n iω(j+1)h
                       u M x−1
                       u X
                n
                                 n 2
              ∥e ∥ h =  t     h|e | ,  n = 0, 1, 2, · · · , N t ,  − µ 1 ξ n−1 iω(j−1)h  − µ 2 ξ n−1 iωjh
                                                                                           e
                                                                         e
                                 j
                          j=1                                         n−1 iω(j+1)h    β   0 iωjh
                                                       (63)     + µ 1 ξ  e        + 2b n−1 ξ e
            where                                                  n−1   β      β     l iωjh  l−1 iωjh
                                                                   X
               n
                    n
                        n
              e = (e , e , . . . , e n  ),  n = 0, 1, 2, · · · , N t .  +  b n−l−1  − b n−l  ξ e  + ξ  e  .
                    1   2      M x−1                               l=1
                                                       (64)                                              (72)
                   n
            Since e = e n  = 0, we have
                   0    M x                                   Now, for n = 1, we have
                           D                                        1 iω(j−1)h     1 iωjh     1 iω(j+1)h
                         Z
                                           n
                                   2
                                                 2
                  n 2
                              n
                ∥e ∥ =       |e (x)| dx = ∥e (x)∥ 2,             µ 1 ξ e     + µ 2 ξ e   − µ 1 ξ e      =
                     h
                                                 L
                                                                                      0 iωjh
                                                                                                 0 iω(j+1)h
                                                                       0 iω(j−1)h
                          0                            (65)      − µ 1 ξ e      − µ 2 ξ e   + µ 1 ξ e
                 n = 0, 1, 2, · · · , N t .
                                                                     β 0 iωjh
                                                                 + 2b ξ e    .
            By using the Parseval identity, we have                  0
                                                                                                         (73)
                                                                  Eq. (73) can be written in the following form:
                         M x−1            +∞
                          X               X                      h                    i
                                                n 2
                                 n 2
                   n 2
                 ∥e ∥ =       h|e | = D       |ξ | ,              µ 2 − µ 1 e iωh  − e −iωh  ξ 1
                     h           j              j      (66)
                          j=1            j=−∞                       h                           i      (74)
                                                                             β        iωh    −iωh   0
                 n = 0, 1, 2, · · · , N t .                      = −µ 2 + 2b + µ 1 e     − e       ξ ,
                                                                             0
                                                           233
   33   34   35   36   37   38   39   40   41   42   43