Page 39 - IJOCTA-15-2
P. 39

M. M. Parsa, K. Sayevand, H. Jafari, I. Masti / IJOCTA, Vol.15, No.2, pp.225-244 (2025)
            which is equivalent to                                Then

                (µ 2 − i (2µ 1 sin(ωh))) ξ 1                     r       1    β  0  r−1   β      β
                                                                                          X

                                                       (75)    ξ + ξ  r−1   =   2b r−1 ξ +  b      − b
                   h                            i                         |R|               r−l−1    r−l
                             β                    0
                = (−µ 2 + 2b ) + i (2µ 1 sin(ωh)) ξ .                                     l=1
                             0


                                                                    l
            Therefore                                          × ξ + ξ  l−1   .

                   "                             #
                              β
                     (−µ 2 + 2b ) + i (2µ 1 sin(ωh))  0
               1
              ξ =             0                    ξ . (76)                                              (83)
                         µ 2 − i (2µ 1 sin(ωh))
                                                                  It is clear that |R| ≥ 1. Therefore
                                β
            From Eq. (76) and b = 1, we have
                                0                                                    r−1

                                                                                    0
                                         2
                               2
                                     2
                       (2 − µ 2 ) + 4µ sin (ωh)                 r  r−1    ≤ 2b β  ξ +  X  b β  − b β
                                                                 ξ + ξ

                                                  0 2
                1 2
               |ξ | =                1 2        |ξ | .  (77)                 r−1           r−l−1   r−l
                                  2
                            2
                          µ + 4µ sin (ωh)                                               l=1
                            2     1

                                                                      l
                                                                 × ξ + ξ  l−1   .

                Also, from Lemma 3, we have                                                              (84)
                     0 2
              1 2
            |ξ | ≤ |ξ | . Therefore                           Let |ξ r−1 | max = max{|ξ , |ξ |, . . . , |ξ r−1 ||}.  In
                                                                                       0
                                                                                          1
                                       0
                                1
                               |ξ | ≤ |ξ |.            (78)   this case, we will have
                                                                 r
                                                               |ξ | + |ξ r−1 | max ≤ 2b β  |ξ r−1 | max + 2|ξ r−1 | max
                                                                                   r−1
                Now, for r ≥ 2, we have                           r−1   β      β
                                                                  X
                                                                ×      b r−l−1  − b r−l  ,
                                 r iωjh
                                            r iω(j+1)h
                  r iω(j−1)h
               µ 1 ξ e     + µ 2 ξ e   − µ 1 ξ e      =
                                                                  l=1
               − µ 1 ξ r−1 iω(j−1)h  − µ 2 ξ r−1 iωjh                                                    (85)
                                         e
                        e
                                                              or
                                         0 iωjh
               + µ 1 ξ r−1 iω(j+1)h  + 2b β  ξ e                     r     r−1          r−1
                        e
                                    r−1                            |ξ | + |ξ  | max ≤ 2|ξ  | max
                                                                                                 !
                 r−1

                 X     β        β     l iωjh   l−1 iωjh                       X                         (86)
                                                                               r−1
               +      b     − b      ξ e    + ξ   e     .                β          β        β
                       r−l−1    r−l                                 ×   b   +      b      − b      .
                                                                         r−1        r−l−1    r−l
                  l=1                                                          l=1
                                                       (79)
                                                              From Lemma 4, we have
                                                                                                   β
                                                                        r
                                                                      |ξ | + |ξ r−1 | max ≤ 2|ξ r−1 | max b .  (87)
                The above equation can be rewritten as:                                            0
                                                                             β
               h                   i                        We know that b = 1. Therefore
                                        r
                µ 2 − µ 1 e iωh  − e −iωh  ξ =                               0
                                                                               r
                                                                              |ξ | ≤ |ξ r−1 | max .      (88)
               h                     i
                −µ 2 + µ 1 e iωh  − e −iωh  ξ r−1
                                                              Thus, from Eq. (78) and Eq. (88), it is obvious
                                                              that
                           r−1

                   β   0   X    β        β      l   l−1                       r     r−1
               + 2b   ξ +       b     − b      ξ + ξ     ,                  |ξ | ≤ |ξ  |, r ≥ 1.         (89)
                   r−1          r−l−1    r−l
                           l=1                                Since this equation holds for every r ≥ 1, it also
                                                       (80)
                                                              holds for n = 1, 2, . . . , N t , and
                                                                         n
                                                                       |ξ | ≤ |ξ n−1 |, n = 1, 2, . . . , N t .  (90)
                which is equivalent to
                                                              Thus, for every n = 1, 2, . . . , N t we have
                                     r
                (µ 2 − i (2µ 1 sin(ωh))) ξ =
                                                                                  n
                                                                                        0
                                                                                |ξ | ≤ |ξ |.             (91)
                [(−µ 2 + i (2µ 1 sin(ωh))] ξ r−1  + 2b β  ξ 0
                                               r−1
                                                       (81)   In the other words, our proposed method is un-

                  r−1
                  X     β       β                             conditionally stable for solving the TFB-S model.
                                       l
                +      b     − b      ξ + ξ l−1  .
                        r−l−1   r−l
                  l=1
                Assuming that R := µ 2 − i (2µ 1 sin(ωh)),
            therefore
                                                                  In what follows, the convergence of the im-

                                        r−1
                                β
                                       X
                                             β
                                                      β
                                    0

                r
               ξ + ξ r−1  R = 2b r−1 ξ +    b r−l−1  − b r−l  plicit discrete scheme (41) using the Fourier anal-
                                        l=1                                                              n
                                                              ysis method is discussed. We assume that E =
                                                                                                       i
                   l
                                                                                      b n
              × ξ + ξ  l−1  .                                 |U −U |, where U and U are the approximate
                                                                    b n
                                                                                n
                                                                n
                                                                                        i
                                                                i
                                                                     i
                                                                                i
                                                       (82)   and exact solutions of Eq. (41), respectively. In
                                                           234
   34   35   36   37   38   39   40   41   42   43   44