Page 37 - IJOCTA-15-2
P. 37

M. M. Parsa, K. Sayevand, H. Jafari, I. Masti / IJOCTA, Vol.15, No.2, pp.225-244 (2025)
                                        n
                                            n
                                  0

                In summary, let U = U , U , · · · , U n   T
                                        1   2       M x−1
                                       T
                                                                 β
            and V = [υ 1 , υ 2 , · · · , υ M x−1 ] . Furthermore,  ∂ u(x, t n )  1    β n  n−1   β  β
                                                                                      X
                                                                          =    b u −       b      − b    u l
                                                                   ∂t β      λ  0           n−l−1    n−l
                                                                                       l=1
               (
                  n
                            n
                 U = λ n , U M x  = ζ n ,  n = 0, 1, 2, · · · , N t ,  − b β  u 0  + r ,
                                                                             n
                  0
                                                                   n−1
                                                                             ∆t
                  0
                 U = υ i ,            i = 0, 1, 2, · · · , M x ,                                         (53)
                  i
                                                       (48)
                                                                  and also, according to Lemma 2
            then, (35) can be expressed in the following ma-
            trix form:                                                         n         2−β
                                                                              r  ≤ C u ∆t   .            (54)
                                                                              ∆t
                 0
              U = V,                                             On the other hand, by using Eq. (28), we have
              
              
              
                  1              0       1     1
               ΛU = (−Λ + 2I) U + 2λF + M ,
                   n
                                            n
                                      2
               ΛU = −ΛU    n−1  + 2λF + M + 2b  β   U 0       1         n−1
                                                                          X
                                                n−1              β  n          β        β      l    β    0
                                                                b U −
                                                                             b      − b     U − b     U
                    n−1   β        β                             0  i                          i    n−1 i
               P
                                         l    l−1                              n−l−1    n−l
               +        b      − b     U + U      ,          λ
                    l=1   n−l−1    n−l                                    l=1
                                                       (49)          U n  − 2U − U   n
                                                                                n
                                                               = A     i+1      i     i−1
                where Λ = (γ ij ) (M x−1)×(M x−1)  and                        h 2

                                                                    U n  − U n
                                                                                          n
                      µ 2 = 1 + 2Ω + Φ,  i = j,               + G     i+1    i−1   − HU + f + r ,
                                                                                                     n
                                                                                                n
                      
                                                                                         i    i     i
                                                                         2h
                      
                        µ 1 = Ω + Ψ,      i = j + 1,
                      
                γ ij =                                 (50)                                              (55)
                      −µ 1 ,             i = j − 1,              and also
                      
                      
                      
                        0,                O.W,
                      
                      
                                                                          n−1
            and also                                           1  b U n−1  −  X  b β  − b β  U l−1  − b β  U 0
                                                                  β
                                                                 0  i          n−l−1    n−l   i     n−1 i
                                         T                  λ
               n     n−  1  n−  1   n−  1                                 l=1
                                       2
            F = f    1  2  , f 2  2 , · · · , f M x−1  ,
            
            
                                                                    U     − 2U     − U
                                                                    n−1      n−1    n−1
                                                               = A    i+1      i      i−1
                                                                              h 2
            
            
            
              M = [−µ 1 (λ n + λ n−1 ), 0, · · · , 0, µ 1 (ζ n + ζ n−1 )] ,  U i+1  − U i−1  n−1  n−1  n−1
               n                                       T
                                                                    n−1     n−1
                                                       (51)    + G       2h        − HU  i   + f i  + r i  .
                            n
                    n−  1  f + f n−1                                                                     (56)
                            i
            where f    2  =      i   .
                    i
                               2                                  Hence, we obtain
                                                                          n−1
                                                              1   β  n−  1  X    β        β     l−  1  β
                                                                 b U   2  −     b      − b    U   2  − b  U  0
            4. Truncation error, stability and                λ   0  i           n−l−1    n−l   i      n−1 i
                                                                           l=1
                convergence analysis                                  n−  1    n−  1      1
                                                                    U i+1  − 2U i   − U i−1
                                                                                          2
                                                                        2        2    n−
                                                               = A
            In the follow-up truncation error, stability, and                  h 2
            convergence analysis are discussed for the pro-           n−  1      1
                                                                                 2
                                                                        2    n−            1      1       1
            posed model of the Black-Scholes equation with    + G   U i+1  − U i−1  − HU  n−  2  + f n−  2  + R n−  2  ,
            fractional coordinate derivatives.                            2h              i       i       i
                                                                                                         (57)
                                                                              n
            Theorem 2. For i = 1, 2, · · · , M x − 1 and n =          n−  1 2  r + r n−1
                                                                              i
                                                                                   i
                                                n−  1         where R i   :=           .
            1, 2, · · · , N t , the truncation error R  2  of the                2
                                                i
            Crank-Nicolson scheme presented is as follows:        From Eq. (54) and Eq. (28), we have
                                                                          n−  1    n    2−β    2
                          n−  1       2−β    2                          |R   2  | ≤ C i  ∆t  + h  ,      (58)
                        R   2  ≤ C(∆t    + h ),        (52)               i
                          i                                           n
                                                              where C i  are constsnts.  Let us suppose that
                where C is constant.                                              n
                                                              C =      max      C , then
                                                                                  i
                                                                   1≤i≤M x,1≤n≤N t
                                                                           n− 1         2−β    2
                                                                         |R   2  | ≤ C(∆t   + h ).       (59)
            Proof. According to the defined fractional deriv-              i
            ative, we have
                                                           232
   32   33   34   35   36   37   38   39   40   41   42