Page 40 - IJOCTA-15-2
P. 40

Analyzing the Black-Scholes equation with fractional coordinate derivatives using . . .
            this case, we have                                and
                  n
                           n
              µ 1 E i−1  + µ 2 E − µ 1 E n  =                            v  M x−1
                                                                         u
                                   i+1
                           i
                                                                         u X
                                                                   n
                                                                                    n 2
                                                                ∥R ∥ h =  t      h|R | , n = 0, 1, 2, · · · , N t ,
                                                β
                                                     0
                                        n−1
                              n−1
                    n−1
              − µ 1 E   − µ 2 E   + µ 1 E   + 2b   E                                j
                    i−1       i         i+1     n−1  i                       j=1
                                                       (92)
                                                                                                        (101)
                n−1

                X     β        β
                                                    n
                                      l
              +      b      − b      E + E l−1  + R ,
                      n−l−1    n−l    i    i        i          where
                l=1
                                                                       n
                                                                 n
                                                                           n
                                                                                   n
                                                               E = (E , E , . . . , E M x−1 ), n = 0, 1, 2, · · · , N t ,
                                                                       1
                                                                           2
                                                                                                        (102)
                                                               and
                                        2
                        n
                where R = O(∆t   2−β  +h ). Furthermore, the
                        i
            initial and boundary conditions imply that
                                                                           n
                                                                       n
                                                                 n
                                                               R = (R , R , . . . , R n  ), n = 0, 1, 2, · · · , N t .
               (                                                       1   2       M x−1
                        n
                   n
                 E = E  M x  = 0, n = 0, 1, 2, . . . , N t ,  (93)                                      (103)
                   0
                                                                                           n
                                                                      n
                   0
                 E = 0, i = 0, 1, 2, . . . , M x .             Since E = E   n  = 0 and R = R    n   = 0, we
                                                                      0
                   i
                                                                                           0
                                                                                                 M x
                                                                             M x
            Therefore
                                                              have
                          n
                                             n−1
             µ 1 E n  + µ 2 E − µ 1 E n  = −µ 1 E i−1  − µ 2 E n−1       Z  D
                          i
                                  i+1
                 i−1
                                                       i
                                                                                                   2
                                                                                n
                                                                                    2
                                                                   n 2
                                                                                              n
                                                                ∥E ∥ =       |E (x)| dx = ∥E (x)∥ 2,
                                                                     h                             L
                                                                                                     (104)
                         n−1
                          X    β        β                                  0
                                                l
             + µ 1 E n−1  +   b      − b      E + E  l−1
                   i+1         n−l−1    n−l     i    i           n = 0, 1, 2, · · · , N t ,
                          l=1
                 n
             + R .                                             and
                 i
                                                       (94)
                                                                         Z  D
            Similar to the previous section,     for n   =      ∥R ∥ =       |R (x)| dx = ∥R (x)∥ 2,
                                                                                                   2
                                                                                             n
                                                                                    2
                                                                   n 2
                                                                                n
                                                                     h
                                                                                                   L
            0, 1, 2, · · · , N t , we define two grid functions as fol-    0                            (105)
            lows:                                                n = 0, 1, 2, · · · , N t .
                    (  n
                     E ,  x ∈ (x j− 1 , x j+ 1 ), j = 1, 2, · · · , M x − 1,  By using the Parseval identity, we will have
                       j
              n
            E (x) =               2    2
                                               h
                                      h
                     0,   x ∈ (x L , x L + ] ∪ [x R − , x R ],            M x−1            +∞
                                      2        2                    n 2    X       n 2     X      n 2
                                                       (95)      ∥E ∥ =        h|E | = D        |s | ,
                                                                      h
                                                                                                  j
                                                                                  j
            and                                                            j=1            j=−∞          (106)
                    (  n                                          n = 0, 1, 2, · · · , N t ,
                     R ,  x ∈ (x j− 1 , x j+ 1 ), j = 1, 2, · · · , M x − 1,
                       j
              n
            R (x) =              2     2
                                               h
                                      h
                     0,   x ∈ (x L , x L + ] ∪ [x R − , x R ].  and
                                      2        2
                                                       (96)               M x−1            +∞
                                                                           X       n 2     X     n 2
                                                                    n 2
                    n
                              n
            Then, E (x) and R (x) have the following Fourier     ∥R ∥ =        h|R | = D        |r | ,  (107)
                                                                                   j
                                                                      h
                                                                                                 j
            series expansion:                                              j=1            j=−∞
                                                                  n = 0, 1, 2, · · · , N t .
                        +∞        jπx
                              n 2i
                        X
                n
               E (x) =       s e  D , n = 0, 1, 2, · · · , N t ,  Again for x j = x L + jh, for the solution of Eq.
                              j
                       j=−∞
                                                              (94), we will have
                                                       (97)
                                                                                             2πj
                                                                            n
            and                                                           E = s e     , ω =     ,       (108)
                                                                                 n iωx j
                                                                           j
                         +∞       jπx                                                        D
                 n
                              n 2i
                         X
               R (x) =       r e   D   n = 0, 1, 2, · · · , N t ,  and
                              j                                                              2πj
                                                                            n
                                                                                 n iωx j
                        j=−∞                                              R = r e     , ω =     .       (109)
                                                                           j
                                                       (98)                                  D
                      √
            where i =   −1, D = x R − x L , and               Lemma 5. There is a positive constant η such
                     (  n    1  R  D  n  2i  jπx              that
                       s =        E (x)e   D dx,                                 n       1
                        j   D  0                       (99)                     |r | ≤ η|r |.           (110)
                        n
                                   n
                                           D dx.
                       r =   1  R  D  R (x)e 2i  jπx
                        j   D  0
                                                                             n
                                                                                              2
                                                              Proof. Since R = O(∆t   2−β  + h ), ∃ η > 0 such
            We define the norm ∥.∥ h as                                      i
                                                              that
                        v
                                                                                              2
                                                                             n
                        u M x−1                                            |R | ≤ η(∆t 2−β  + h ).      (111)
                        u X                                                  i
                 n
                                   n 2
               ∥E ∥ h =  t     h|E | , n = 0, 1, 2, · · · , N t ,  Then, according to Eq. (107)
                                   j
                           j=1                                                    √
                                                                                                2
                                                                           n
                                                      (100)             ∥R ∥ h ≤ η D(∆t  2−β  + h ).    (112)
                                                                           i
                                                           235
   35   36   37   38   39   40   41   42   43   44   45