Page 22 - IJOCTA-15-3
P. 22

A. Kaveh, M. Vahedi, M. Gandomkar / IJOCTA, Vol.15, No.3, pp.379-395 (2025)
            presents a viable solution for improving stabil-   8. Petras I. Fractional-Order Nonlinear Systems:
            ity, efficiency, and control precision in practical   Modeling, Analysis, and Simulation. Springer;
            BLDC motor applications.                              2011.
                                                               9. Hilfer R. Applications of Fractional Calculus in
            Acknowledgments                                       Physics. World Scientific Pub. Co.; 2000.
                                                              10. Shahzad M. Chaos control in three dimensional
            None.                                                 cancer model by state space exact lineariza-
                                                                  tion based on Lie Algebra. Int J Eng Technol.
            Funding                                               2016;4(33):1-11.
                                                                  https://doi.org/10.14419/ijet.v4i3.6129.
            None.                                             11. Xue G, Lin F, Qin B. Adaptive neural net-
                                                                  work control of chaotic fractional order perma-
            Conflict of interest                                  nent magnet synchronous motors using backstep-
                                                                  ping technique. Front Phys. 2020;8:12.
            The authors declare they have no competing in-        https://doi.org/10.3389/fphy.2020.
            terests.                                          12. Ge Z, Lin G. The complete, lag and anticipated
                                                                  synchronization of a BLDCM chaotic system.
            Author contributions                                  Chaos, Solitons & Fractals. 2007;34:740-764.
                                                                  https://doi.org/10.1016/j.chaos.2006.05.057.
            Conceptualization: Amin Kaveh, Mohammad Va-       13. Hemati N. Strange attractors in brushless DC mo-
            hedi                                                  tors. IEEE Trans Circuits Syst I Fundam Theory
            Formal analysis:    Mohammad Vahedi, Majid            Appl. 1994;41(1):40-45.
            Gandomkar                                             https://doi.org/10.1109/81.265867.
            Investigation: Amin Kaveh                         14. Ye S, Chau KT. Chaotization of DC motors
            Methodology: Mohammad Vahedi                          for industrial mixing. IEEE Trans Ind Electron.
            Writing – original draft: Amin Kaveh                  2007;54:2024-2032.
            Writing – review & editing: Mohammad Vahedi,          https://doi.org/10.1109/TIE.2007.903252.
                                                              15. Reyes R, Cruz C, Nakano-Miyatake M, Perez-
            Majid Gandomkar
                                                                  Meana H. Digital video watermarking in DWT
                                                                  domain using chaotic mixtures. IEEE Lat Am
            Availability of data
                                                                  Trans. 2010;8:304-310.
                                                                  https://doi.org/10.1109/TLA.2010.5438444.
            All data is presented in this paper.
                                                              16. Rajagopal K, Vaidhyanathan S, Karthikeyan A,
                                                                  Duraisamy P. Dynamic analysis and chaos sup-
            References
                                                                  pression in a fractional order brushless DC motor.
              1. Xia C. Permanent Magnet Brushless DC Motor       Electr Eng. 2016;99:721-733.
                Drives and Controls. John Wiley & Sons; 2012.     https://doi.org/10.1007/978-3-319-32273-5 2 .
              2. Jabbar MA, Phyu HN, Liu Z, Bi C. Modeling and  17. Sun LX, Lu S, Wen ZG, Li YF. Analysis of chaotic
                numerical simulation of a brushless permanent-    motion mechanism of permanent magnet synchro-
                magnet DC motor in dynamic conditions by          nous motors. Electr Mach Control. 2019;23(3):97-
                time-stepping technique. IEEE Trans Ind Appl.     104.
                2004;40(3):763-770.                               https://doi.org/10.16383/j.aemc.2019.3.001.
                https://doi.org/10.1109/TIA.2004.826330.      18. Wu S, Zhang JA. Terminal sliding mode ob-
              3. Qi G. Energy cycle of brushless DC motor chaotic  server based robust backstepping sensorless speed
                system. Appl Math Model. 2017;51:686-697.         control for interior permanent magnet syn-
                https://doi.org/10.1016/j.apm.2017.06.001.        chronous motor. Int J Control Autom Syst.
              4. Utkin VI. Sliding Modes in Control and Optimiza-  2018;16(6):2743-2753.
                tion. Springer; 1992.                             https://doi.org/10.1007/s12555-016-0782-x.
              5. DeCarlo RA, Zak SH, Matthews GP. Variable    19. Tang C, Bai L, Zhang G, Yang J, Li T. Robust
                structure control of nonlinear multivariable sys-  guaranteed cost control of PMSM chaotic sys-
                tems: a tutorial. Proc IEEE. 1998;76(3):212-232.  tem with uncertain parameters. J Eng Sci Technol
                https://doi.org/10.1109/5.2070.                   Rev. 2020;13(3):181-190.
              6. Zhou P, Bai R, Zheng JM. Stabilization of a      https://doi.org/10.25103/jestr.133.01.
                fractional-order Chaotic brushless DC Motor via  20. Yu X, Zhang C. Robust fractional-order PID
                a Single Input. Nonlinear Dyn. 2015;(82):519-525.  control for chaotic systems. Nonlinear Dyn.
                https://doi.org/10.1007/s11071-015-2452-2.        2021;103(2):1123-1140.
              7. Li S, Li P, Zheng Z, Huang T. Fractional order   http://dx.doi.org/10.2139/ssrn.5162779.
                sliding mode control for circulating current sup-  21. Kumar R, Singh M. Comparative study of PID,
                pressing of MMC. Electr Eng. 2023;105(6):3791-    FOPID, and sliding mode control for uncertain
                3800.                                             systems. IEEE Access. 2020;8: 76523-76535.
                https://doi.org/10.1007/s00202-023-01902-7.       https://doi.org/10.31763/ijrcs.v5i1.1764.
                                                           394
   17   18   19   20   21   22   23   24   25   26   27