Page 22 - IJOCTA-15-3
P. 22
A. Kaveh, M. Vahedi, M. Gandomkar / IJOCTA, Vol.15, No.3, pp.379-395 (2025)
presents a viable solution for improving stabil- 8. Petras I. Fractional-Order Nonlinear Systems:
ity, efficiency, and control precision in practical Modeling, Analysis, and Simulation. Springer;
BLDC motor applications. 2011.
9. Hilfer R. Applications of Fractional Calculus in
Acknowledgments Physics. World Scientific Pub. Co.; 2000.
10. Shahzad M. Chaos control in three dimensional
None. cancer model by state space exact lineariza-
tion based on Lie Algebra. Int J Eng Technol.
Funding 2016;4(33):1-11.
https://doi.org/10.14419/ijet.v4i3.6129.
None. 11. Xue G, Lin F, Qin B. Adaptive neural net-
work control of chaotic fractional order perma-
Conflict of interest nent magnet synchronous motors using backstep-
ping technique. Front Phys. 2020;8:12.
The authors declare they have no competing in- https://doi.org/10.3389/fphy.2020.
terests. 12. Ge Z, Lin G. The complete, lag and anticipated
synchronization of a BLDCM chaotic system.
Author contributions Chaos, Solitons & Fractals. 2007;34:740-764.
https://doi.org/10.1016/j.chaos.2006.05.057.
Conceptualization: Amin Kaveh, Mohammad Va- 13. Hemati N. Strange attractors in brushless DC mo-
hedi tors. IEEE Trans Circuits Syst I Fundam Theory
Formal analysis: Mohammad Vahedi, Majid Appl. 1994;41(1):40-45.
Gandomkar https://doi.org/10.1109/81.265867.
Investigation: Amin Kaveh 14. Ye S, Chau KT. Chaotization of DC motors
Methodology: Mohammad Vahedi for industrial mixing. IEEE Trans Ind Electron.
Writing – original draft: Amin Kaveh 2007;54:2024-2032.
Writing – review & editing: Mohammad Vahedi, https://doi.org/10.1109/TIE.2007.903252.
15. Reyes R, Cruz C, Nakano-Miyatake M, Perez-
Majid Gandomkar
Meana H. Digital video watermarking in DWT
domain using chaotic mixtures. IEEE Lat Am
Availability of data
Trans. 2010;8:304-310.
https://doi.org/10.1109/TLA.2010.5438444.
All data is presented in this paper.
16. Rajagopal K, Vaidhyanathan S, Karthikeyan A,
Duraisamy P. Dynamic analysis and chaos sup-
References
pression in a fractional order brushless DC motor.
1. Xia C. Permanent Magnet Brushless DC Motor Electr Eng. 2016;99:721-733.
Drives and Controls. John Wiley & Sons; 2012. https://doi.org/10.1007/978-3-319-32273-5 2 .
2. Jabbar MA, Phyu HN, Liu Z, Bi C. Modeling and 17. Sun LX, Lu S, Wen ZG, Li YF. Analysis of chaotic
numerical simulation of a brushless permanent- motion mechanism of permanent magnet synchro-
magnet DC motor in dynamic conditions by nous motors. Electr Mach Control. 2019;23(3):97-
time-stepping technique. IEEE Trans Ind Appl. 104.
2004;40(3):763-770. https://doi.org/10.16383/j.aemc.2019.3.001.
https://doi.org/10.1109/TIA.2004.826330. 18. Wu S, Zhang JA. Terminal sliding mode ob-
3. Qi G. Energy cycle of brushless DC motor chaotic server based robust backstepping sensorless speed
system. Appl Math Model. 2017;51:686-697. control for interior permanent magnet syn-
https://doi.org/10.1016/j.apm.2017.06.001. chronous motor. Int J Control Autom Syst.
4. Utkin VI. Sliding Modes in Control and Optimiza- 2018;16(6):2743-2753.
tion. Springer; 1992. https://doi.org/10.1007/s12555-016-0782-x.
5. DeCarlo RA, Zak SH, Matthews GP. Variable 19. Tang C, Bai L, Zhang G, Yang J, Li T. Robust
structure control of nonlinear multivariable sys- guaranteed cost control of PMSM chaotic sys-
tems: a tutorial. Proc IEEE. 1998;76(3):212-232. tem with uncertain parameters. J Eng Sci Technol
https://doi.org/10.1109/5.2070. Rev. 2020;13(3):181-190.
6. Zhou P, Bai R, Zheng JM. Stabilization of a https://doi.org/10.25103/jestr.133.01.
fractional-order Chaotic brushless DC Motor via 20. Yu X, Zhang C. Robust fractional-order PID
a Single Input. Nonlinear Dyn. 2015;(82):519-525. control for chaotic systems. Nonlinear Dyn.
https://doi.org/10.1007/s11071-015-2452-2. 2021;103(2):1123-1140.
7. Li S, Li P, Zheng Z, Huang T. Fractional order http://dx.doi.org/10.2139/ssrn.5162779.
sliding mode control for circulating current sup- 21. Kumar R, Singh M. Comparative study of PID,
pressing of MMC. Electr Eng. 2023;105(6):3791- FOPID, and sliding mode control for uncertain
3800. systems. IEEE Access. 2020;8: 76523-76535.
https://doi.org/10.1007/s00202-023-01902-7. https://doi.org/10.31763/ijrcs.v5i1.1764.
394

