Page 29 - IJOCTA-15-3
P. 29

Using infinitesimal symmetries for determining the first Maxwell time of geometric control problem on SH(2)
                                                              Moreover, the Lie derivative of the metric g has
                             1
                        ˙
                        h 3 =  sin(2α),  ˙ α = h 3 .          the form:
                             2                                                ∂f 1        ∂f 3
                                                               L v (g) =2(cosh z  − sinh z   )dx 2
            Next, we introduce another change of variables:                   ∂x          ∂x
                                                                                 ∂f 3       ∂f 1   2
                                                                       + 2(cosh z    − sinh z   )dy
                    γ = 2α ∈ R/4πZ,    c = 2h 3 ∈ R.                             ∂y          ∂y
                                                                           ∂f 2   2
                                                                       + 2(    )dz
            Finally, we obtain that the equation describing                ∂z
            our vertical system corresponds to a mathemati-                      ∂f 1         ∂f 3
                                                                       + (2 cosh z   − 2 sinh z
            cal pendulum given by:                                               ∂y            ∂y
                                                                                ∂f 1         ∂f 3
                                                                       − 2 sinh z   + 2 cosh z   )dxdy
                          ˙ γ = c,  ˙ c = − sin(γ).                             ∂x            ∂x
                                                                                            ∂f 1
                                                                       + (2f 1 sinh z + 2 cosh z  − 2f 3 cosh z
            The total energy integral of the pendulum ob-                                    ∂z
                                                     2
                                                          2
                                                 2
            tained is given as: E =  c 2  −cos(γ) = 2h −h +h ,                  ∂f 3   ∂f 2
                                   2             3   1    2            − 2 sinh z   + 2    )dxdz
            according to this energy, the cylinder C can be                     ∂z      ∂x
                                                   S 5
            decomposed in the following way. C =     i=1  C i ,        + (−2 sinh z  ∂f 1  − 2f 1 cosh z
            where                                                                  ∂z
                                                                                ∂f 3               ∂f 2
                      C 1 = {λ ∈ C | E ∈ (−1, 1)}                      + 2 cosh z   + 2f 3 sinh z + 2  )dzdy
                                                                                 ∂z                 ∂y
                      C 2 = {λ ∈ C | E ∈ (1, ∞)}
                                                              Now the relation L v (g) = 0 implies:
                      C 3 = {λ ∈ C | E = 1, c ̸= 0}
                      C 4 = {λ ∈ C | E = −1}                                  ∂f 1        ∂f 3
                                                                        cosh z    − sinh z    = 0,       (17)
                      C 5 = {λ ∈ C | E = 1}                                    ∂x         ∂x
                                                                              ∂f 3        ∂f 1
            For a detailed derivation of the solutions to our           cosh z  ∂y  − sinh z  ∂y  = 0,   (18)
                                 5
            system, refer to Butt( ).
                                                                                          ∂f 2
                                                                                              = 0,       (19)
                                                                                           ∂z
                                                              and
            4.3. Infinitesimal symmetries                                      ∂f 1         ∂f 3
                                                                        2 cosh z   − 2 sinh z
                                                                                ∂y           ∂y
            In this subsection, we compute the symmetry al-                    ∂f 1         ∂f 3
            gebra of the control system Equation (11).                −2 sinh z    + 2 cosh z    = 0,
                                                                               ∂x            ∂x
                                                              and
            Proposition 3. Infinitesimal symmetries of the
            control system Equation (11) form a Lie algebra       2f 1 sinh z + 2 cosh z  ∂f 1  − 2f 3 cosh z
            generated (over R) by the vector fields:                                 ∂z
                                                                                         ∂f 3    ∂f 2
                                                                                −2 sinh z    + 2     = 0,
                         v 1 = −x∂ y − y∂ x − ∂ z ,                                      ∂z      ∂x
                         v 2 = ∂ x ,                          and
                         v 3 = ∂ y .                                     ∂f 1                     ∂f 3
                                                                −2 sinh z    − 2f 1 cosh z + 2 cosh z
                                                                         ∂z                        ∂z
            Proof. It is clear that ∆ constitutes a contact                         +2f 3 sinh z + 2  ∂f 2  = 0.
            distribution. Indeed, ∆ = ker(ω), where                                                ∂y
                                         1
            ω = cosh(z)dy − sinh(z) ∈ Λ (M) and we have                                                  ∂f 3
                                                              Using equation Equation (16), we have f 1 =   .
            dω ∧ ω ̸= 0. Let                                                                              ∂z
                                                              By substituting f 1 into Equations (17) and (18),
            v = f 1 (x, y, z)X 1 +f 2 (x, y, z)X 2 +f 3 (x, y, z)X 3 be
                                                              we obtain the following:
            a vector field. The conditions ω(L v (X 1 )) = 0 and
            ω(L v (X 2 )) = 0, lead to the following system:                  ∂ f 3        ∂f 3
                                                                               2
                                                                        cosh z     − sinh z    = 0,
                               ∂f 3        ∂f 3                              ∂z∂x          ∂x
                    f 2 + cosh z   + sinh z    = 0,    (15)                                              (20)
                                                                                           2
                               ∂x          ∂y                                 ∂f 3        ∂ f 3
                                                                        cosh z    − sinh z     = 0.
                                           ∂f 3                               ∂y         ∂z∂y
                                      f 1 −    = 0.    (16)
                                           ∂z
                                                           401
   24   25   26   27   28   29   30   31   32   33   34