Page 34 - IJOCTA-15-3
P. 34

S.Ezzeroual, B.Sadik / IJOCTA, Vol.15, No.3, pp.396-406 (2025)
            Further disclosure                                12. Bloch AM. Nonholonomic Mechanics and Con-
                                                                  trol. Springer; 2015.
            A preliminary summary of this work was pre-
                                                                  https://doi.org/10.1007/978-1-4939-3017-3
            sented at the International Conference on Mathe-
                                                              13. Mao Z, Kobayashi R, Nabae H, Suzumori K. Mul-
            matics and Decision, held at the UM6P Vanguard        timodal strain sensing system for shape recogni-
            Center (UM6P, Rabat, December 17-20, 2024).           tion of tensegrity structures by combining tradi-
                                                                  tional regression and deep learning approaches.
                                                                  IEEE Robot Automation Lett. 2024;9(11):1-6.
            References
                                                                  https://doi.org/10.1109/LRA.2024.3469811
              1. Sachkov Y. Introduction to geometric control.  14. Peng Y, Yang X, Li D, et al. Predicting flow sta-
                In: Springer Optimization and Its Applications.   tus of a flexible rectifier using cognitive comput-
                Moscow:URSS; 2019:192.                            ing. Exp Syst Appl. 2025;264: 125878.
                https://doi.org/10.1007/978-3-031-02070-4         https://doi.org/10.1016/j.eswa.2024.125878
              2. Moiseev I, Sachkov YL. Maxwell strata in sub-  15. Jurdjevic V. Optimal Control and Geometry: In-
                Riemannian problem on the group of motions of     tegrable Systems, Vol. 154. Cambridge University
                a plane. ESAIM: COV 2010; 16(2): 380–399.         Press; 2016.
                https://doi.org/10.1051/cocv/2009030              https://doi.org/10.1017/CBO9781316286852
              3. Sachkov YL. Complete description of the Maxwell  16. Agrachev A, Barilari D. Sub-Riemannian Struc-
                strata in the generalized Dido problem. Sb. Math.  tures on 3D Lie Groups. SISSA & MIAN; 2011.
                2006;197(6):901–950.                              https://doi.org/10.48550/arXiv.1007.4970
                https://doi.org/10.1070/SM2006v197n06AB       17. Peter J.Olver, Application of Lie Groups to Dif-
                EH003783                                          ferential Equations; 1993.
              4. Agrachev AA, Barilari D, Boscain U. A Compre-    https://doi.org/10.1007/978-1-4612-4350-2
                hensive Introduction to Sub-Riemannian Geome-  18. Olver FWJ, Lozier DW, Boisvert RF, Clark CW.
                try. Cambridge University Press; 2019.            (2010). NIST Handbook of Mathematical Func-
                https://doi.org/10.1017/9781108677325             tions. National Institute of Standards and Tech-
              5. Butt YA. Sub-Riemannian Problem on Lie Group     nology, Cambridge University Press; 2010.
                of Motions of Pseudo-Euclidean Plane; 2015:   19. Bonnard B, Cots O. Geometric numerical meth-
                53–91.                                            ods and results in the contrast imaging problem in
                http://142.54.178.187:9060/xmlui/handle/          nuclear magnetic resonance. Math Models Meth-
                123456789/1122                                    ods Appl Sci. 2014;24(1):187–212.
              6. Gallier J, Quaintance J. Notes on Differential Ge-  https://doi.org/10.1142/S0218202513500504
                ometry and Lie Groups [Lecture Notes]; 2016.
              7. Hrdina J, Zalabov´a L. Local Geometric Control
                of a Certain Mechanism with the Growth Vec-
                                                              Soukaina Ezzeroual is a PhD student in Mathemat-
                tor (4,7). J Dyn Control Syst.; 2020:26;199–216.
                                                              ics at Cadi Ayyad University, Faculty of Sciences Sem-
                https://doi.org/10.1007/s10883-019-09460-7
                                                              lalia. Her research focuses on sub-Riemannian geom-
              8. Agrachev AA, Barilari D. Sub-Riemannian struc-
                                                              etry, optimal control, algebra, and analysis. She is
                tures on 3D Lie groups. J Dyn Control Syst.
                                                              conducting her research under the supervision of Pro-
                2012;18(1):21–44.
                                                              fessor Brahim Sadik. .
                https://doi.org/10.1007/s10883-012-9133-8
                                                                 https://orcid.org/0009-0003-4536-3892
              9. Jean F. Control of Nonholonomic Systems: From
                Sub-Riemannian Geometry to Motion Planning.
                In: Springer Briefs in Mathematics. Springer;
                2014.                                         Brahim Sadik is a Professor-Researcher in Mathe-
             10. Hill CD, Nurowski P. A Car as Parabolic Geom-  matics at Cadi Ayyad University, Faculty of Sciences
                etry; 2019. arXiv:1908.01169.                 Semlalia. His research focuses on Algebra, Analysis,
             11. Hermans J. A symmetric sphere rolling on a sur-  and Applied Mathematics, and he has published sev-
                face. Nonlinearity 1995;8:1–23.               eral articles in these fields.
                https://doi.org/10.1088/0951-7715/8/4/003        https://orcid.org/0000-0002-3548-0265

                            An International Journal of Optimization and Control: Theories & Applications
                                             (https://accscience.com/journal/ijocta)





            This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
            the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
            in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
            http://creativecommons.org/licenses/by/4.0/.

                                                           406
   29   30   31   32   33   34   35   36   37   38   39