Page 32 - IJOCTA-15-3
P. 32
S.Ezzeroual, B.Sadik / IJOCTA, Vol.15, No.3, pp.396-406 (2025)
Figure 4. The trajectory (x(t), y(t)) and its
symmetry, in the case λ ∈ C 1
Figure 8. The local minimizer for numerical values,
where λ = (φ, k) ∈ C 2
Figure 5. The local minimizer for numerical values,
where λ ∈ C 1
Figure 9. The trajectory’s symmetric for numerical
values, where λ ∈ C 2
Figure 6. The trajectory’s symmetric for numerical
values, where λ ∈ C 1
Figure 10. The trajectory and its symmetry for
numerical value, where λ ∈ C 2
Table 1. Numerical verification of the Maxwell
points
k 0 10 −3 10 −12 10 −15
t = 4k 0 K(k 0 ) 6.283×10 −3 6.283×10 −12 6.283×10 −15
x t −1.25×10 −5 −8.37×10 −9 i 1.89×10 −12 2.03×10 −15
y t −6.28×10 −3 −8.37×10 −6 i −6.43×10 −12 −6.44×10 −15
To simulate the dynamics of the system, we
Figure 7. The trajectory (x(t), y(t)) and its used the RK45 numerical integration method,
which is an adaptive Runge-Kutta method of 4th
symmetry for numerical values, where λ ∈ C 1
404

