Page 57 - IJOCTA-15-3
P. 57

Predefined-time fractional-order terminal SMC for robot dynamics


















                                            Figure 1. Proposed control model. 32

            We can obtain the stability of the tracking error  predefined time, under specified conditions for
            by carefully selecting a Lyapunov function candi-  bounded uncertainties and disturbances.
            date:                                                 Proof: We have selected the Lyapunov func-
                                     n
                                   1  X                       tion candidate as shown below:
                                         2
                           P 1 (t) =    ε i (t)        (14)
                                   2                                                   n
                                    i=1                                     P 2 (t) =  1  X  σ (t)       (21)
                                                                                           2
                   ˙
            Then P 1 (t) is calculated as                                           2      i
                                                                                      i=1
                                   n
                                                                   ˙
                                  X                           The P 2 (t) can be formulated as:
                           ˙
                          P 1 (t) =  ε i (t) ˙ε i (t)  (15)
                                                                                    n
                                  i=1                                              X
                                                                            ˙
                                                                           P 2 (t) =   σ i (t) ˙σ i (t)  (22)
            Equation (13) substituted into (15), one obtains
                                                                                   i=1
                                      1+  η       
                        n        −a 1 |ε|  2 sign(ε)          Substituting Equation (12) into Equation (22),
                      X
               ˙
               P 1 (t) =  ε i (t)    −a 2 |ε| 1−  η 2 sign(ε)    (16)  the following equation can be expressed as
                                       α
                       i=1       −a 3 D sign(ε)                          P
                                                                          n
                                                                  ˙
                                                                 P 2 (t) =  σ i (t)
            After simplification using Definition 1, the equa-           i=1
                                                                                            2
                                                                                                       
            tion becomes:                                             −(℘ 1 + ℘ 2 ∥x∥ + ℘ 3 ∥ ˙x∥ )sign(σ(t))
                                    4+η                4−η                             1+  µ         
                                            n
                         n
                        X                  X                     ×  +℘(x, ˙x, ¨x) − b |σ(t)|
             ˙                    2   4               2  4                          1       2 sign(σ(t)) 
            P 1 (t) ≤ −a 1   |ε i (t)|  −a 2    |ε i (t)|                     1−  µ
                                                                      −b |σ(t)|  2 sign(σ(t))
                        i=1                 i=1                         2
                                                       (17)                                              (23)
            By using Lemma 2, we can express the previous     Solving Equation (23) using Assumption 1
            equation more concisely                                      n      "          1+ µ          #
                                                                        X         −b |σ(t)|  2 sign(σ(t))
                                                                 ˙
                                              4+η              P 2 (t) ≤  σ i (t)   1       µ
                                    n         4                                  −b |σ(t)| 1− 2 sign(σ(t))
                                η
                   ˙
                  P 1 (t) ≤ −a 1 n −  4  P  |ε i (t)| 2                 i=1          2
                                                                                                         (24)
                                   i=1
                                  4−η                 (18)

                        n           4                         It can be expressed as
                        P       2
                  −a 2     |ε i (t)|
                                                                                      4+µ    n         4−µ
                                                                          n
                       i=1                                     ˙         X          2  4     X         2   4
                                                              P 2 (t) ≤ −b 1  |σ i (t)|  −b 2     |σ i (t)|
            then Equation (18) can be expressed as
                                                                         i=1                 i=1
              ˙
                                       4 − a 2 2
             P 1 (t) ≤ −a 1 2  4+η  −  η 4 P 1 (t)  4+η  4−η  4−η                                        (25)
                           4 n
                                                4 P 1 (t)
                                                        4
                       η  − η    1+  η    1− η     1−  η      By Lemma 2, the following equation can be given
                     1+
             = −a 1 2  4 n  4 P 1 (t)  4 − a 2 2  4 P 1 (t)  4
                                                              as
                                                       (19)
                                                                                     n        4+µ
            Utilizing Lemma 1, we can prove that the sliding        ˙           −  µ P       2   4
                                                                    P 2 (t) ≤ −b n  4   |σ i (t)|
                                                                              2
            surface defined in Equation (6) converges to zero                        i=1                 (26)
            within a specific time frame                                 n        4−µ
                                                                                     4
                                                                         P       2
                                                                    −b      |σ i (t)|
                              2π                  π                   2
                                                                         i=1
               T 1 = q                    = q
                           η  1− η  − η              − η
                         1+
                    η   2  4 2  4 n  4 a 1 a 2  η  a 1 a 2 n  4  Subsequently, we can derive Equation (26) as fol-
                                                       (20)   lows
                                                               ˙
                                                                                                  4 P 2 (t)
                                                                                         4 − b 2
                Theorem 1: Using the n-DOF robotic ma-         P 2 (t) ≤ −b n −  µ 4 2  4+µ  4+µ  4−µ    4−µ
                                                                                 4 P 2 (t)
                                                                                                          4
                                                                         1                    2
            nipulator model (3), designed sliding surface (6),                                           (27)
            and FoPtSMC control method (10) ensures the       This analysis confirms that the system trajectory
            system trajectory converges to zero within a      converges to σ(t) in predefined time, as provided
                                                           429
   52   53   54   55   56   57   58   59   60   61   62