Page 61 - IJOCTA-15-3
P. 61

Predefined-time fractional-order terminal SMC for robot dynamics

                tracking control of non-singular fast terminal  27. Xue H, Liu X. A novel fast terminal sliding mode
                sliding mode based on disturbance observer.       with predefined-time synchronization. Chaos,
                International Journal of Control, Automation      Solitons & Fractals. 2023;175:114049.
                and Systems. 2023;21(2):440–451.                  http://dx.doi.org/10.1016/j.chaos.2023.114049
                https://doi.org/10.1007/s12555-021-0604-0     28. Mazhar N, Malik FM, Raza A, Khan R.
             18. Chen J, Tang Q, Zhao C, Zhang H. Adaptive slid-  Predefined-time control of nonlinear systems: A
                ing mode control for robotic manipulators with    sigmoid function based sliding manifold design
                backlash. Proceedings of the Institution of Me-   approach.  Alexandria  Engineering  Journal.
                chanical Engineers, Part C: Journal of Mechani-   2022;61(9): 6831–6841.
                cal Engineering Science. 2023;237(24):5842–5852.  http://dx.doi.org/10.1016/j.aej.2021.12.030
                http://dx.doi.org/10.1177/09544062231167555   29. Mu˜noz-V´azquez   AJ,  S´anchez-Torres  JD,
             19. Faraj MA, Maalej B, Derbel N. Design and         Guti´errez-Alcal´a S, Jim´enez-Rodr´ıguez E,
                analysis of nonsingular terminal super twisting   Loukianov AG. Predefined-time robust contour
                sliding mode controller for lower limb rehabilita-  tracking of robotic manipulators. Journal of the
                tion exoskeleton contacting with ground. In State  Franklin Institute. 2019;356(5):2709–2722.
                estimation and stabilization of nonlinear systems:  http://dx.doi.org/10.1016/j.jfranklin.2019.01.041
                Theory and applications. Springer. 2023;367–386.  30. Ahmed S, Azar AT. Enhanced tracking control
                http://dx.doi.org/10.1007/978-3-031-37970-3 1 9   for n-dof robotic manipulators: A fixed-time ter-
             20. Zaway I, Jallouli-Khlif R, Maalej B, Medhaffar   minal sliding mode approach with time delay es-
                H, Derbel N. From PD to fractional order PD       timation. Results in Engineering. 2024;24:102904.
                controller used for gait rehabilitation. 2021 18th  http://dx.doi.org/10.1016/j.rineng.2024.102904
                International  Multi-Conference  on  Systems,  31. Nojavanzadeh D, Badamchizadeh M. Adaptive
                Signals & Devices (SSD). 2021;948–953.            fractional-order nonsingular fast terminal sliding
                http://dx.doi.org/10.1109/SSD52085.2021           mode control for robot manipulators. IET Con-
                .9429318                                          trol Theory Appl. 2016;10(13):1565–1572.
             21. Gokyildirim  A,  Calgan  H,  Demirtas   M.       http://dx.doi.org/10.1049/iet-cta.2015.1218
                Fractional-order sliding mode control of a    32. Grabcad community. accessed: Mar. 17, 2013.
                4d memristive chaotic system. Journal of Vibra-   [online] :  Https://grabcad.com/library/robot-
                tion and Control. 2024;30(7-8):1604–1620.         puma-560. (n.d.).
                http://dx.doi.org/10.1177/10775463231166187   33. Armstrong B, Khatib O, Burdick J. The explicit
             22. Chen Z, Wang X, Cheng Y. Adaptive finite-time    dynamic model and inertial parameters of the
                disturbance observerbased recursive fractional-   puma 560 arm. Proceedings. 1986 IEEE inter-
                order sliding mode control of redundantly         national conference on robotics and automation.
                actuated cable driving parallel robots under      1986;3:510–518.
                disturbances and input saturation. Journal of     https://doi.org/10.1109/ROBOT.1986.1087644
                Vibration and Control. 2023;29(3-4):675–688.  34. Yin C, Huang X, Chen Y, Dadras S, Zhong S-m,
                https://doi.org/10.1177/10775463211051460         Cheng Y. Fractional-order exponential switching
             23. Bingi K, Rajanarayan Prusty B, Pal Singh A. A    technique to enhance sliding mode control. Appl
                review on fractionalorder modelling and control   Math Model. 2017;44:705–726.
                of robotic manipulators. Fractal and Fractional.  https://doi.org/10.1016/j.apm.2017.02.034
                2023;7(1):77.
                https://doi.org/10.3390/fractalfract7010077
             24. Mofid O, Amirkhani S, Din Su, Mobayen S,
                Vu MT, Assawinchaichote W. Finite-time con-   Saim Ahmed received his B.S degree in Electronics
                vergence of perturbed nonlinear systems using  Engineering from Sir Syed University of Science and
                adaptive barrier-function nonsingular sliding  Technology, Karachi, Pakistan in 2009. He received
                mode control with experimental validation.    his M.E degree in Industrial Control and Automation
                Journal of Vibration and Control. 2023;29(13-  from Hamdard University, Karachi, Pakistan, in 2013.
                14):3326–3339.                                He completed his Ph.D. degree in control science and
                http://dx.doi.org/10.1177/10775463221094889   engineering from Nanjing University of Science and
             25. Rojsiraphisal T, Mobayen S, Asad JH, Vu MT,  Technology, China in 2019. He has served as an As-
                Chang A, Puangmalai J. Fast terminal sliding  sistant Professor at the Department of Mechatronics,
                control of underactuated robotic systems based  Shaheed Zulfikar Ali Bhutto Institute of Science and
                on disturbance observer with experimental vali-  Technology, Karachi, Pakistan. He is currently work-
                dation. Mathematics. 2021;9(16):1935.         ing as a Postdoctoral Researcher at Prince Sultan Uni-
                http://dx.doi.org/10.3390/math9161935         versity, Saudi Arabia. His research interests include
             26. Ahmed S, Azar AT, Ibraheem IK. Model-free    the theory and applications of adaptive control, sliding
                scheme using time delay estimation with fixed-  mode control, time delay control, robotic exoskeleton
                time fsmc for the nonlinear robot dynamics.   and manipulators, nonlinearities and their compensa-
                AIMS Mathematics. 2024;9(4):9989–10009.       tion.
                https://doi.org/10.3934/math.2024489             https://orcid.org/0000-0002-2302-705X
                                                           433
   56   57   58   59   60   61   62   63   64   65   66