Page 61 - IJOCTA-15-3
P. 61
Predefined-time fractional-order terminal SMC for robot dynamics
tracking control of non-singular fast terminal 27. Xue H, Liu X. A novel fast terminal sliding mode
sliding mode based on disturbance observer. with predefined-time synchronization. Chaos,
International Journal of Control, Automation Solitons & Fractals. 2023;175:114049.
and Systems. 2023;21(2):440–451. http://dx.doi.org/10.1016/j.chaos.2023.114049
https://doi.org/10.1007/s12555-021-0604-0 28. Mazhar N, Malik FM, Raza A, Khan R.
18. Chen J, Tang Q, Zhao C, Zhang H. Adaptive slid- Predefined-time control of nonlinear systems: A
ing mode control for robotic manipulators with sigmoid function based sliding manifold design
backlash. Proceedings of the Institution of Me- approach. Alexandria Engineering Journal.
chanical Engineers, Part C: Journal of Mechani- 2022;61(9): 6831–6841.
cal Engineering Science. 2023;237(24):5842–5852. http://dx.doi.org/10.1016/j.aej.2021.12.030
http://dx.doi.org/10.1177/09544062231167555 29. Mu˜noz-V´azquez AJ, S´anchez-Torres JD,
19. Faraj MA, Maalej B, Derbel N. Design and Guti´errez-Alcal´a S, Jim´enez-Rodr´ıguez E,
analysis of nonsingular terminal super twisting Loukianov AG. Predefined-time robust contour
sliding mode controller for lower limb rehabilita- tracking of robotic manipulators. Journal of the
tion exoskeleton contacting with ground. In State Franklin Institute. 2019;356(5):2709–2722.
estimation and stabilization of nonlinear systems: http://dx.doi.org/10.1016/j.jfranklin.2019.01.041
Theory and applications. Springer. 2023;367–386. 30. Ahmed S, Azar AT. Enhanced tracking control
http://dx.doi.org/10.1007/978-3-031-37970-3 1 9 for n-dof robotic manipulators: A fixed-time ter-
20. Zaway I, Jallouli-Khlif R, Maalej B, Medhaffar minal sliding mode approach with time delay es-
H, Derbel N. From PD to fractional order PD timation. Results in Engineering. 2024;24:102904.
controller used for gait rehabilitation. 2021 18th http://dx.doi.org/10.1016/j.rineng.2024.102904
International Multi-Conference on Systems, 31. Nojavanzadeh D, Badamchizadeh M. Adaptive
Signals & Devices (SSD). 2021;948–953. fractional-order nonsingular fast terminal sliding
http://dx.doi.org/10.1109/SSD52085.2021 mode control for robot manipulators. IET Con-
.9429318 trol Theory Appl. 2016;10(13):1565–1572.
21. Gokyildirim A, Calgan H, Demirtas M. http://dx.doi.org/10.1049/iet-cta.2015.1218
Fractional-order sliding mode control of a 32. Grabcad community. accessed: Mar. 17, 2013.
4d memristive chaotic system. Journal of Vibra- [online] : Https://grabcad.com/library/robot-
tion and Control. 2024;30(7-8):1604–1620. puma-560. (n.d.).
http://dx.doi.org/10.1177/10775463231166187 33. Armstrong B, Khatib O, Burdick J. The explicit
22. Chen Z, Wang X, Cheng Y. Adaptive finite-time dynamic model and inertial parameters of the
disturbance observerbased recursive fractional- puma 560 arm. Proceedings. 1986 IEEE inter-
order sliding mode control of redundantly national conference on robotics and automation.
actuated cable driving parallel robots under 1986;3:510–518.
disturbances and input saturation. Journal of https://doi.org/10.1109/ROBOT.1986.1087644
Vibration and Control. 2023;29(3-4):675–688. 34. Yin C, Huang X, Chen Y, Dadras S, Zhong S-m,
https://doi.org/10.1177/10775463211051460 Cheng Y. Fractional-order exponential switching
23. Bingi K, Rajanarayan Prusty B, Pal Singh A. A technique to enhance sliding mode control. Appl
review on fractionalorder modelling and control Math Model. 2017;44:705–726.
of robotic manipulators. Fractal and Fractional. https://doi.org/10.1016/j.apm.2017.02.034
2023;7(1):77.
https://doi.org/10.3390/fractalfract7010077
24. Mofid O, Amirkhani S, Din Su, Mobayen S,
Vu MT, Assawinchaichote W. Finite-time con- Saim Ahmed received his B.S degree in Electronics
vergence of perturbed nonlinear systems using Engineering from Sir Syed University of Science and
adaptive barrier-function nonsingular sliding Technology, Karachi, Pakistan in 2009. He received
mode control with experimental validation. his M.E degree in Industrial Control and Automation
Journal of Vibration and Control. 2023;29(13- from Hamdard University, Karachi, Pakistan, in 2013.
14):3326–3339. He completed his Ph.D. degree in control science and
http://dx.doi.org/10.1177/10775463221094889 engineering from Nanjing University of Science and
25. Rojsiraphisal T, Mobayen S, Asad JH, Vu MT, Technology, China in 2019. He has served as an As-
Chang A, Puangmalai J. Fast terminal sliding sistant Professor at the Department of Mechatronics,
control of underactuated robotic systems based Shaheed Zulfikar Ali Bhutto Institute of Science and
on disturbance observer with experimental vali- Technology, Karachi, Pakistan. He is currently work-
dation. Mathematics. 2021;9(16):1935. ing as a Postdoctoral Researcher at Prince Sultan Uni-
http://dx.doi.org/10.3390/math9161935 versity, Saudi Arabia. His research interests include
26. Ahmed S, Azar AT, Ibraheem IK. Model-free the theory and applications of adaptive control, sliding
scheme using time delay estimation with fixed- mode control, time delay control, robotic exoskeleton
time fsmc for the nonlinear robot dynamics. and manipulators, nonlinearities and their compensa-
AIMS Mathematics. 2024;9(4):9989–10009. tion.
https://doi.org/10.3934/math.2024489 https://orcid.org/0000-0002-2302-705X
433

