Page 84 - IJOCTA-15-3
P. 84

C. D’Apice et .al. / IJOCTA, Vol.15, No.3, pp.449-463 (2025)

                                   f                          where (x, y) stands for image pixel and N x ×N y is
                       0

               + f − c ε,τ,m  log
                                 c 0                          the original image size at the grid G H , we define
                                  ε,τ,m
                   m−1                      !                 the following discrete notations
                   X         0         f
                                                                             n
                                                                           x
                 +      f − c     log                                    ∆ φ = ± φ    n    − φ n  ,
                             ε,τ,j     c 0                                 ± ij       i±1,j   ij
                   j=1                  ε,τ,j                              y  n       n       n
                                                                         ∆ φ = ± φ    i,j±1  − φ ij  ,
                                                                           ± ij
               [H ε (−φ + l j+1 + τ) − H ε (φ − l j − τ)]
                                                                         m(a, b) = minmod (a, b) =
                                  1−τ
                 2 − τ   (φ − l m+1 )  , if φ − l m+1 > 0,
               +                                                                     sgn a + sgn b
                   ε     0, otherwise,                                   min (|a|, |b|)          ,
                                                                                          2
                 2 − τ    (l 0 − φ) 1−τ , if l 0 − φ > 0,            n
               −                                       (45)   where   φ i,j  denotes  the  approximation   of
                   ε     0,            otherwise.             φ k+1 (n∆t, i, j). Then, the numerical approxima-
                We also need to specify the boundary condi-   tion of the principle components of the boundary
            tion on ∂Ω associated with (43). To obtain a well-  value problem (47)–(49) takes the form
            posed problem, we change the natural boundary                  ∂φ   n  φ n+1  − φ n
                                                                                              i,j
                                                                                       i,j
            condition (43) just slightly, namely                                   ≈            ,
                                                                            ∂t           ∆t
                                                                                i,j
                                     
                          f
                        M ε ∇φ                                                  f   2      n
                  f
                  ε
                                  , ν Ω    = 0  a.e. on ∂Ω.                    M ε   ∇φ
               M q                                                                         
                             f
                      2
                     ε + |M ε ∇φ| 2                                   div  q                   ≈
                                                                                       f
                                                                                2
                                                                               ε + |M ε ∇φ| 2
                                         q                                                       i,j
                                                  f
            Because the denominator        ε + |M ε ∇φ| 2  is               x    n     y    n
                                                                          ∆    X    + ∆    Y    ,
                                                   f                        −    i,j    −   i,j
            strictly positive, the matrix function M ε (x) for   X n  = aP  n  + bQ ,  Y  n  = bP  n  + cQ ,
                                                                                                       n
                                                                                  n
            each x ∈ Ω is symmetric, and the discrete gradi-       i,j     i,j    i,j   i,j    i,j     i,j
                                                                                          2
            ents are bounded in the norm, we can pass to the                  a b    = M   f   ,
            following boundary condition instead of (43)                      b c          ε
                                                                                  n
                                f
                         f
                      M ∇φ, M ν Ω = 0      on ∂Ω,      (46)                        P i,j  =
                        ε
                                ε
                                                                                    x
                                                                                  ∆ φ n
            where ν Ω is a unit normal to ∂Ω. However, in                           + i,j                 ,
                                                                r
            view of the assumption (6), this condition can be            x  n   2      y  n   y  n   2
                                                                   2
                                                                  ε + ∆ φ        + m ∆ φ , ∆ φ
            rewritten as follows:                                         + i,j           + i,j   − i,j
                            ∂φ                                                    Q n  =
                                = 0  on ∂Ω.                                         i,j
                           ∂ν Ω                                                     y  n
                                                                                  ∆ φ
                                                                                    + i,j
                                                                                                          .
                Consequently, we obtain the subsequent prob-             y     2                    2
                                                                r
                                                                                          x
                                                                                             n
                                                                                                  x
                                                                   2
            lem for numerical simulation                          ε + ∆ φ    n   + m ∆ φ , ∆ φ       n
                                                                          + i,j
                                                                                          + i,j
                                                                                                  − i,j
                                              
                                      2
                                     f
               ∂φ                  M ε   ∇φ
                                                − V 1 (φ)
                                              
                                                    b
                  = L(φ) div  q
               ∂t                        f                        As a result, utilizing the formulas given above,
                                  2
                                 ε + |M ε ∇φ| 2
                                                              we arrive at the following numerical scheme asso-
                    in (0, ∞) × Ω,                     (47)   ciated with the initial boundary problem (47)–
                  ∂φ                                          (49):
                      = 0   on (0, ∞) × ∂Ω,            (48)
                  ∂ν Ω                                           n+1     n       n
                                                                φ    = φ i,j  + L(φ )
                                                                                 i,j
                  φ(0, ·) = φ 0 (·)  in Ω,             (49)      i,j
                                                                                                    n
                                                                           n
                                                                                       n
                                                                  × ∆  x −   X i,j    + ∆ y −   Y i,j    ∆t − V 1 (φ )∆t
                                                                                                b
                                                                                                    l,j
            where the functions L(φ) and V 1 (φ) are defined
                                          b
                                                                        ∀i = 1, . . . , N x ,  ∀ j = 1, . . . , N y ,
            by (27) and (45), respectively.
                                                                                          ∀ n = 0, 1, . . . (50)
                Quasi-linear partial differential equations can
            be solved in a variety of ways (for a list of meth-  with the initial conditions
            ods, check the references 35,36 ). Finite differences            φ 0  = (φ 0 )  ,
                                                                              i,j      i,j               (51)
            techniques and an explicit scheme of the forward        ∀i = 1, . . . , N x ,  ∀ j = 1, . . . , N y ,
            Euler method are maybe the best choices because
                                                              and boundary conditions
            we are working with pixels in image processing.             n      n      n      n
            Let ∆t be a time step size. Then setting                   φ 0,j  = φ 1,j ,  φ N x,j  = φ N x−1,j ,
                                                                               n
                        t = n∆t, n = 0, 1, 2, . . . ,                   v n  = v ,  φ n  = φ n    ,      (52)
                                                                         l,0
                                                                                             l,N y −1
                                                                               l,1
                                                                                     l,N y
                                                                      ∀l = 1, . . . , N x ,  ∀ j = 1, . . . , N y .
                 x = i (1 ≤ i ≤ N x ),  y = j (1 ≤ j ≤ N y ),
                                                           456
   79   80   81   82   83   84   85   86   87   88   89