Page 81 - IJOCTA-15-3
P. 81

Computational aspects of the crop field segmentation problem based on anisotropic active contour model
                                                                         ∗
                                 R        0
                                    fH ε (φ ε,τ  − l m − τ) dx  such that φ ∈ BV (Ω) and, up to a subsequence,
                                                                         τ
              c 0   = c m (φ 0 ε,τ  ) = R Ω  0           ,              0     ∗       m+1
               ε,τ,m
                                   Ω  H ε (φ ε,τ  − l m − τ) dx        c ε,τ  → c τ  in R  as ε → 0,
                                                       (16)             0      ∗               1
            and the pair φ 0 ε,τ  satisfies the following optimality   φ ε,τ  → φ τ  strongly in L (Ω),
                                                                          ∗
                                                                                   ∗
                                                                               f
                                                                  f
                                                                                                         2
            condition                                           M Dφ  0  ⇀ M Dφ weakly-∗ in M(Ω; R ),
                                                                      ε,τ          τ
                                      !
               Z                                                                             ∗  ∗
                                   f                                      inf J τ (c, φ) = J τ (c , φ )
                        0

             −     f − c ε,τ,0  log  0                                  (c,φ)∈Ξ              τ  τ
                Ω                 c ε,τ,0                                   0   0
                                                                = lim J ε,τ (c ε,τ  , φ ε,τ ) = lim  inf  J ε,τ (c, φ),
                    × δ ε (l 1 − φ 0  − τ)[φ − φ 0  ] dx           ε→0                ε→0 (c,φ)∈Ξ ε
                               ε,τ          ε,τ
                                                              where the objective functional J τ : Ξ → R is de-
                                                !
                    m−1 Z
                    X            0         f
                  +         f − c ε,τ,j  log  0               fined as
                    j=1  Ω                 c ε,τ,j                       Z               f
                                                               J τ (c, φ) =  (f − c 0 ) log  χ A dx
                                                                                               τ
                          0
                    × δ ε (φ  − l j − τ)                                                       0
                          ε,τ                                             Ω              c 0
                    × H ε (−φ 0 ε,τ  + l j+1 + τ)[φ − φ 0  ] dx    m−1 Z               f    h         i
                                                ε,τ
                                                                    X
                                                                 +        (f − c j ) log       τ     τ    dx
                                                !                                           χ A − χ A j+1
                                                                                               j
                    m−1 Z                                                              c j
                    X                      f                       j=1  Ω
                  −         f − c 0 ε,τ,j  log  0                  Z
                         Ω                 c ε,τ,j                                   f
                    j=1                                          +    (f − c m ) log     χ A m
                                                                                           τ dx
                    × δ ε (−φ 0 ε,τ  + l j+1 + τ)                    Ω              c m
                                                                      m Z
                                                                               f
                                                                     X
                    × H ε (φ 0 ε,τ  − l j − τ)[φ − φ 0 ε,τ  ] dx  + α       |M Dχ E |.
                                                                                    τ
                                                                          Ω         j
                    Z                   f                          j=1
                  +     f − c 0    log
                             ε,τ,m      0
                     Ω                 c ε,τ,m
                    × δ ε (φ 0  − l m − τ)[φ − φ 0 ε,τ ] dx   3. On representation of optimality
                          ε,τ
                      Z                                          system (17) in the form of
                    1      ′  0             ′      0
                  +       Ψ (φ ε,τ  − l m+1 ) − Ψ (l 0 − φ ε,τ  )  Euler–Lagrange equation
                    ε  Ω
                    × [φ − φ 0  ] dx                          In this section, we characterize the solution
                            ε,τ
                                                              (c 0 ε,τ , φ 0 ε,τ  ) of the minimization problem (8)–(12)

                  + j ε,τ (φ) − j ε,τ φ 0  ≥ 0,  ∀ φ ∈ BV (Ω),  for given values ε ∈ (0, 1) and τ > 0 deriving for
                                   ε,τ
                                                       (17)                                  0    0
                                                              that the equation satisfied by (c ε,τ  , φ ε,τ ). To do
            where                                             so, we decompose J ε,τ : Ξ ε → R as the sum of
                                                              three functionals, that is,
                           1
                   Φ ε (φ) =  ∥Ψ(l 0 − φ)∥ 1
                                         L (Ω)
                           ε                                    J ε,τ (c, φ) = I ε,τ (c, φ) + Φ ε (φ) + Λ ε,τ (φ),  (19)

                           +∥Ψ(φ − l m+1 )∥ 1    ,                         m+1     2
                                           L (Ω)
                                                              where I ε,τ : R  × L (Ω) → R and
                               f
                  j ε,τ (φ) = ε|M Dφ|(Ω)                      Φ ε : L (Ω) → R are defined by the rules
                                                                    2
                               ε
                                                                            Z
                                m Z
                                            h    i
                               X          f                                                 f
                           + α          M D χ E j τ   .       I ε,τ (c, φ) =  (f − c 0 ) log  χ A τ 0 ε  dx

                                          ε
                               j=1  Ω 2ε           ε                         Ω              c 0

                                                                      m−1 Z
                                                                      X                   f
                                                                    +        (f − c j ) log
                Moreover, we have the following result con-                               c j
                                                                      j=1  Ω
            cerning the asymptotic behavior of the approxi-
                                                                        h    i    h     i
            mated problem (8)–(12) (for the technical details,        ×   χ A τ  − χ A τ     dx
            we refer to 30,31 ).                                             j  ε     j+1  ε
                                                                                       f
                                                                      Z
                                                                    +    (f − c m ) log     χ A m ε  dx,  (20)
                                                                                               τ
            Theorem 2. Let τ ≪ 1 be a given positive                   Ω              c m
                          0    0
            value. Let   (c ε,τ , φ ε,τ  ) ∈ Ξ ε  ε→0  be a sequence           1
            of optimal pairs to the approximated minimiza-            Φ ε (φ) =  ε  ∥Ψ(l 0 − φ)∥ 1
                                                                                             L (Ω)
                                                    0
            tion problems (8)–(12). Assume that    φ ε,τ  ε>0                 +∥Ψ(φ − l m+1 )∥ 1     ,  (21)
                                                                                              L (Ω)
            is a bounded sequence in BV (Ω), and the relaxed             2
            problem                                           and Λ ε,τ : L (Ω) → R is defined by
                           J τ (c, φ) →  inf           (18)               Λ ε,τ (φ) = ε|M Dφ|(Ω)
                                                                                        f
                                      (c,φ)∈Ξ                                           ε
                                      φ∈BV (Ω)
                                                                             m Z
                                                                                         h    i
                                                                            X
                                                                                       f
            has a nonempty set of minimizers for the given              +α           M D χ E  τ   ,   (22)

                                                                                      ε
                                                  ∗
                                                     ∗
            value τ > 0. Then there exists a pair (c , φ ) ∈ Ξ              j=1  Ω 2ε         j  ε
                                                     τ
                                                  τ
                                                           453
   76   77   78   79   80   81   82   83   84   85   86