Page 82 - IJOCTA-15-3
P. 82

C. D’Apice et .al. / IJOCTA, Vol.15, No.3, pp.449-463 (2025)
            if φ ∈ BV (Ω), and                                and setting
                                                                                                !
                                        2
                  Λ ε,τ (φ) = ∞, if φ ∈ L (Ω) \ BV (Ω).                                    f
                                                              V 1 φ 0  = − f − c 0    log
                                                                   ε,τ           ε,τ,0      0
                                                                                           c
                                                                                            ε,τ,0
                                                     1
                Taking into account the fact that Ψ ∈ C (R),         × δ ε (l 1 − φ 0  − τ)
                                                     loc                        ε,τ
            it can be shown that                                                              !
                                                                     m−1
                                                                     X         0         f


              Φ ε φ 0 ε,τ  + λh = Φ ε φ 0 ε,τ                      +      f − c ε,τ,j  log  0
                                                                     j=1                 c ε,τ,j

                              + λD φ Φ ε φ 0  [h] + r(h, λ),           0                 0
                                         ε,τ
                                                                 × δ ε (φ ε,τ  − l j − τ)H ε (−φ ε,τ  + l j+1 + τ)
                          2
            for any h ∈ L (Ω), where, as λ → 0,|r(h, λ)| =           m−1                      !
                                       2
            o(|λ|), and D φ Φ ε (φ 0 ε,τ ) : L (Ω) → R is a linear  −  X  f − c 0    log  f
            continuous functional with the following represen-                 ε,τ,j     c 0 ε,τ,j
                                                                     j=1
            tation:
                                                                 × δ ε (−φ 0  + l j+1 + τ)H ε (φ 0  − l j − τ)
                                     Z                                   ε,τ               ε,τ
                                1  h     ′       0
                       0

              D φ Φ ε φ ε,τ  [h] =  −   Ψ (l 0 − φ ε,τ )h dx                         f
                                ε     Ω                            + f − c 0    log          δ ε (φ 0  − l m − τ)
                              Z                                            ε,τ,m     c 0         ε,τ
                                                    i                                 ε,τ,m
                                   ′
                            +    Ψ (φ 0 ε,τ  − l m+1 )h dx . (23)    h    0          1−τ      0
                               Ω                                   +     (φ ε,τ  − l m+1 )  , if φ ε,τ  − l m+1 > 0,
                              δ−1                                      0, otherwise,
                    ′
            Here, Ψ (z) =    δz   , if z ≥ 0,   .                            0  1−τ         0         i
                             0,      if z < 0                           (l 0 − φ ε,τ )  , if l 0 − φ ε,τ  > 0,  2 − τ
                                                                   −                                          ,
                                                                        0, otherwise,                     ε
                We also observe that the right-hand side in                                              (28)
            (23) can be represented as follows:
                                                              J (w, φ) =
             1  Z    ′  0           ′      0         0          Z
                  Ψ (φ   − l m+1 ) − Ψ (l 0 − φ  ) [φ − φ  ] dx
                                                                               f
             ε  Ω      ε,τ                  ε,τ        ε,τ           L (w) |M Dφ| if φ ∈ BV (Ω),
                                                                               ε
                 2 − τ  Z      0                                    Ω                        2
               =         [φ − φ ε,τ  ]                             +∞                 if φ ∈ L (Ω) \ BV (Ω),
                   ε    Ω                                                                                (29)
                    0          1−τ      0
                   (φ   − l m+1 )  , if φ   − l m+1 > 0,                    m
              ×      ε,τ                 ε,τ              dx              X
                                                                               ′
                   0,                 otherwise               V 2 φ 0 ε,τ  = α  δ (φ 0 ε,τ  − l j + τ),  (30)
                                                                               ε
                                                                           j=1
                       Z
                  2 − τ
               −          [φ − φ 0 ε,τ ]                      we see that inequality (25) leads to the relation
                    ε    Ω
                                                                 Z                 Z
                          0  1−τ          0
                                                                                                   f
                    (l 0 − φ  )  , if l 0 − φ  > 0,                V 1 φ 0  φ dx +   V 2 φ 0  φ |M Dφ  0  |
               ×           ε,τ             ε,τ        dx.               ε,τ               ε,τ      ε   ε,τ
                    0,              otherwise                     Ω                 Ω
                                                                                           i
                                                                      h
                                                       (24)         + J (w, φ) − J (w, φ 0      ≥ o(1)h,
                                                                                        ε,τ
                                                                                          )
                                                                                             w=φ
                                                                               2
                                                                       ∀ φ ∈ L (Ω),                      (31)
                Since (c 0 ε,τ , φ 0  ) is an optimal pair to the ap-        0
                            ε,τ
                                                                                                   L (Ω)
            proximated minimization problem (8)–(12), it fol-  where h = φ−φ ε,τ  , and o(1) → 0 as ∥h∥ 2  → 0.
            lows from representation (19)–(22) that
                    J ε,τ (c 0  , φ) − J ε,τ (c 0  , φ 0  ) ≥ 0   Hence,
                          ε,τ          ε,τ  ε,τ        (25)
                                     2
                              ∀ φ ∈ L (Ω).                              0
                                                                − V 1 φ ε,τ  ∈
            Taking into account that, for each φ ∈ BV (Ω),      Z        0      f    0
                                                                                   ε
               Λ ε,τ (φ) − Λ ε,τ φ 0                           ∂     V 2 φ ε,τ  φ |M Dφ ε,τ  | + J (w, φ)     .
                                ε,τ                                 Ω                                       0
                    Z                                                                                   w=φ ε,τ
                                           f

                  =     L(φ) − L(φ 0 ε,τ ) |M Dφ 0 ε,τ  |     Since
                                           ε
                      Ω                                           Z
                    Z                 Z                                    0      f    0
                                                                ∂     V 2 φ    φ |M Dφ    | + J (w, φ)
                               f
                                                 f
                                                     0
                  +    L(φ)|M Dφ| −      L(φ)|M Dφ   ε,τ |          Ω      ε,τ     ε    ε,τ
                                                 ε
                              ε
                     Ω                  Ω                                 Z
                                                       (26)                         0      f    0
                                                                      = ∂      V 2 φ ε,τ  φ |M Dφ ε,τ |
                                                                                            ε
            with                                                             Ω
                                                                                                + ∂J (w, φ)
                                               
                                m
                                X
                 L(φ) =   ε + α   δ ε (φ − l j + τ)   ,  (27)  by the Moreau–Rockafellar Theorem, it follows
                                j=1                           that the Euler–Lagrange equation for φ 0  takes
                                                                                                     ε,τ
                                                           454
   77   78   79   80   81   82   83   84   85   86   87