Page 96 - IJOCTA-15-3
P. 96

Sayed Saber et.al. / IJOCTA, Vol.15, No.3, pp.464-482 (2025)
                Substitute the series and fractional derivative  of the solution to this problem is:
            approximations into each of the differential equa-           K
                                                                               ˆ
                                                                         X
            tions:                                               υ j (t) =  Γ j (k)(t − ι 0 ) kα j  ,  ι ∈ [ι 0 , T],
                                                                         j=0
                      α
            Σ ∞  a  C  0,ι  n                                 where Γ j (k) satisfies
              n=0 n D (ι ) = −a 1 ˆu(ι j ) + a 2 ˆu(ι j )ˆv(ι j ) + · · · + a 20 ,
                                                                       ˆ
                          j
                      α
             Σ ∞  b  C  0,ι  n                                α((k + 1)α j + 1)   ˆ
              n=0 n D (ι ) = −a 8 ˆu(ι j )ˆv(ι j ) − · · · + a 21 ,
                                                                  ˆ
                          j
                      α
              n=0 n D (ι ) = a 15 ˆv(ι j ) + · · · − a 19 ˆv(ι j ) ˆw(ι j ),
             Σ ∞  c  C  0,ι  n                                   α(kα j + 1)  Γ j (k + 1) = g j (k, Γ 1 , Γ 2 , ..., Γ n ),
                          j
                                                              and with initial conditions Γ j (0) = d j .  The
            where j = 0, 1, . . . , m.                        differential transform of g j (k, Γ 1 , Γ 2 , ..., Γ n ) cor-
                Based on the complexity of the algebraic sys-  responds to g j (t, υ 1 , υ 2 , ..., υ n ) for j = 1, 2, ..., n.
            tem, the coefficients a n , b n , and c n can be de-  Partition the interval [ι 0 , T] into M subintervals
            termined numerically or symbolically. Once the    [ι m−1 , ι m ], where m = 1, 2, ..., M, using a step size
            coefficients are determined, approximate solu-    of h = (T − ι 0 )/M and nodes ι m = ι 0 + mh. The
            tions are constructed as:                         principles of MSGDTM are outlined below.
                                                                  Initially, the MSGDTM method solves (3)-(4)
                                    n=0 n ι ,
                            ˆ u(t) ≈ Σ N  a  n                on the first interval [ι 0 , ι 1 ], yielding the approx-
                            ˆ v(t) ≈ Σ N  b  n                imate solution υ i,1 (t) for t ∈ [ι 0 , ι 1 ]. For m ≥
                                    n=0 n ι ,
                                                              2, applying MSGDTM to (3)-(4) on [ι m−1 , ι m ]
                            ˆ w(t) ≈ Σ N  c  n                uses the continuity condition υ i,m (ι m−1 )  =
                                    n=0 n ι ,
                                                              υ i,m−1 (ι m−1 ). Repeating this process results in
            where N is the number of terms chosen based on    approximations υ i,m (t) for all m = 1, 2, ..., M.
            the desired accuracy.                             The final approximation is defined as:
                                                                            
                                                                            υ i,1 (t)  if ι ∈ [ι 0 , ι 1 ],
                                                                            
                                                                            
                                                                            
                                                                             υ i,2 (t)  if ι ∈ [ι 1 , ι 2 ],
                                                                    υ j (t) =  .
                                                                            .
            4.2. MSGDTM                                                     .
                                                                            
                                                                            
                                                                              υ i,M (t)  if ι ∈ [ι M−1 , ι M ].
                                                                            
            Let the differential transforms of ˆu(t), ˆv(t), and
                                       ˆ
                                                         ˆ
                                             ˆ
             ˆ w(t) be represented as ˆu(k), ˆv(k), and ˆw(k),  MSGDTM remains effective for all step sizes h.
            respectively.  Assume the initial values satisfy  For system (1), the MSGDTM procedure yields:
            ˆ u(0) = ˆu 0 , ˆv(0) = ˆv 0 , and ˆw(0) = ˆw 0 . The solu-     α(αk + 1)
                                                                 ˆ
                                                               ˆ u(k + 1) =
            tion process begins with these initial conditions in              ˆ
                                                                          α(α(k + 1) + 1)
            the transformed domain at k = 0. Applying the                                            2 ˆ
                                                                                  ˆ
                                                                                              ˆ
                                                                                          ˆ
            recurrence relations derived earlier, we iteratively           − b 1 ˆu(k) + b 2 ˆu(k)ˆv(k) + b 3 ˆv (k)
                                ˆ
                                              ˆ
                       ˆ
            compute ˆu(k + 1), ˆv(k + 1), and ˆw(k + 1) for each               3 ˆ        ˆ       2 ˆ
                                                                          + b 4 ˆv (k) + b 5 ˆw(k) + b 6 ˆw (k)
            k up to the desired approximation order K. The

                                                                                3 ˆ
            approximate solutions in the original domain for              + b 7 ˆw (k) + b 20 ,
            ˆ u(t), ˆv(t), and ˆw(t) can then be reconstructed via
                                                                 ˆ
            the inverse differential transform. Using the MS-   ˆ v(k + 1) =  α(αk + 1)
                                                                              ˆ
            GDTM methodology, partition the interval [0, T]               α(α(k + 1) + 1)
            into M subintervals. To illustrate the approach,                − b 8 ˆu(k)ˆv(k) − b 9 ˆu (k) − b 10 ˆu (k)
                                                                                  ˆ
                                                                                      ˆ
                                                                                             2 ˆ
                                                                                                        3 ˆ
                                           63 67
            consider the system analyzed in: -
                                                                                 ˆ
                                                                                          ˆ
                                                                                                    ˆ
                                                                          + b 11 ˆv(k)(1 − ˆv(k)) − b 12 ˆw(k)
                        α
                      D υ 1 (t) = g 1 (t, υ 1 , υ 2 , ..., υ n ),
                       1                                                         2 ˆ       3 ˆ
                        α
                      D υ 2 (t) = g 2 (t, υ 1 , υ 2 , ..., υ n ),         − b 13 ˆw (k) − b 14 ˆw (k) + b 21 ,
                       2
                             . . .                      (3)    ˆ w(k + 1) =  α(αk + 1)
                                                                 ˆ
                                                                              ˆ
                                                                          α(α(k + 1) + 1)
                       α
                      D υ n (t) = g n (t, υ 1 , υ 2 , ..., υ n ).
                       n
                                                                                ˆ
                                                                                                   3 ˆ
                                                                                        2 ˆ
                                                                           b 15 ˆv(k) + b 16 ˆv (k) + b 17 ˆv (k)
            subject to

                                                                                               ˆ
                                                                                 ˆ
                                                                                           ˆ
                      υ j (ι 0 ) = d j ,  i = 1, 2, ..., n,  (4)          − b 18 ˆw(k) − b 19 ˆv(k) ˆw(k) .
            The solution of the problem (3)-(4) is sought over    The initial values: ˆu(0) = d 1 , ˆv(0) = d 2 , and
            the domain [ι 0 , T]. The kth-order approximation  ˆ w(0) = d 3 . Following is the differential transform
                                                           468
   91   92   93   94   95   96   97   98   99   100   101