Page 126 - IJOCTA-15-4
P. 126
Zhang et al. / IJOCTA, Vol.15, No.4, pp.649-669 (2025)
1998;454(1971):903-995 for engineering applications. Expert Syst Appl.
https://doi.org/10.1098/rspa.1998.0193 2022;198:116924
10. Wu Z, Huang NE. Ensemble empirical mode https://doi.org/10.1016/j.eswa.2022.116924
decomposition: a noise-assisted data analysis 22. Chai X, Liu W. CEEMDAN [Gas valve
method. Adv Adapt Data Anal. 2009;1(01):1-41 fault diagnosis based on improved CEEMDAN
https://doi.org/10.1142/S1793536909000047 and multi-scale fuzzy entropy]. [Mod Mach Tool
11. Zhou H, Jia M. EMD Hilbert [Analysis of rolling Manuf Technol.] 2020 ;(10):140-143
bearing fault diagnosis based on EMD and kur- https://doi.org/10.13462/j.cnki.mmtamt.2020.
tosis Hilbert envelope demodulation]. Mechatron 10.033
Eng. 2014;31(9) 23. Huang Z, Xie Y. Fault diagnosis method of rolling
https://doi.org/10.3969/j.issn.1001- bearing based on BP neural network. In: 2009
4551.2014.09.008 International Conference on Measuring Technol-
12. Yao F, Yang X, Ding F, Zhao M, Li S. EMD-AR ogy and Mechatronics Automation. Vol 1. IEEE;
[Fault diagnosis of rolling bearings based on 2009:647-649
wavelet threshold denoising, EMD-AR spectrum https://doi.org/10.1109/ICMTMA.2009.246
analysis, and extreme learning machine]. , [Manuf 24. Chen G, Lu X, Liu T. [Rolling bearing fault diag-
Technol Mach Tool.] 2023;(7):16-20 nosis based on BWO-optimized VMD and singu-
https://doi.org/10.19287/j.mtmt.1005- lar spectrum entropy]. . [Equip Manuf Technol.]
2402.2023.07.002 2023. https://www.fx361.com/page/2023/1124/
13. Qin YF, Fu X, Li XK, Li HJ. ADAMS simulation 22807868.shtml
and HHT feature extraction method for bearing 25. Shan YT, Liu T, Chu W, et al. [Application
faults of coal shearer. Processes. 2024;12(1):164 of genetic algorithm-optimized variational mode
https://doi.org/10.3390/pr12010164 decomposition in bearing fault feature extrac-
14. Zhang F, Gao S, Zhang W, Li G. Improved tion]. [Noise Vib Control.] 2024;44(1):148-153.
EEMD and overlapping group sparse second- https://nvc.sjtu.edu.cn/CN/Y2024/V44/I1/148
order total variation. J Braz Soc Mech Sci Eng. 26. Zhou X, Zhang Y, Wang Y, Ma F. VMD AR
2024;46(6):386 [Application of VMD-based AR mode and cor-
https://doi.org/10.1007/s40430-024-04965-0 relation dimension in fault feature extraction for
15. Damine Y, Bessous N, Pusca R, et al. A new bear- gear]. Manuf Technol Mach Tool. 2021;(1):91-95.
ing fault detection strategy based on combined 27. Zahid M, Ud Din F, Shah K, Abdeljawad T.
modes ensemble empirical mode decomposition, Fuzzy fixed point approach to study the exis-
KMAD, and an enhanced deconvolution process. tence of solution for Volterra type integral equa-
Energies. 2023;16(6):2604 tions using fuzzy Sehgal contraction. PLoS One.
https://doi.org/10.3390/en16062604 2024;19(6):e0303642
16. Zhou X, Wang X, Wang H, et al. Rotor fault diag- https://doi.org/10.1371/journal.pone.0303642
nosis method based on VMD symmetrical polar 28. Trojovsk´y P, Dehghani M. Subtraction-average-
image and fuzzy neural network. Appl Sci (Basel). based optimizer: a new swarm-inspired meta-
2023;13(2):1134 heuristic algorithm for solving optimization prob-
https://doi.org/10.3390/app13021134 lems. Biomimetics. 2023;8(2):149
17. Dragomiretskiy K, Zosso D. Variational mode https://doi.org/10.3390/biomimetics8020149
decomposition. IEEE Trans Signal Process. 29. Antoni J, Randall RB. The spectral kurtosis: ap-
2014;62(1-4):531-544 plication to the vibratory surveillance and diag-
https://doi.org/10.1109/TSP.2013.2288675 nostics of rotating machines. Mech Syst Signal
18. Wei W, He G, Yang J, Li G, Ding S. Tool Process. 2006;20(2):308-331
wear monitoring based on the gray wolf opti- https://doi.org/10.1016/j.ymssp.2004.09.002
mized variational mode decomposition algorithm
and Hilbert–Huang transformation in machining
stainless steel. Machines. 2023;11(8):806
https://doi.org/10.3390/machines11080806 Jingsong Zhang is a current master’s student
19. Meraihi Y, Gabis AB, Mirjalili S, Ramdane- at the Engineering College of Sabah University in
Cherif A. Grasshopper optimization algorithm: Malaysia.
theory, variants, and applications. IEEE Access. https://orcid.org/0009-0001-6397-3454
2021;9:50001-50024
https://doi.org/10.1109/ACCESS.2021.3067597
20. Gandomi AH, Yang XS, Alavi AH. Cuckoo search
Xiaolong Zhou is a vice dean and associate pro-
algorithm: a metaheuristic approach to solve
structural optimization problems. Eng Comput. fessor of the Mechanical Engineering College of
2013;29:17-35 Beihua University. He has a high level of aca-
https://doi.org/10.1007/s00366-011-0241-y demic expertise in the fields of mechanical engi-
21. Chopra N, Ansari MM. Golden jackal opti- neering and control engineering.
mization: a novel nature-inspired optimizer https://orcid.org/0000-0002-0934-6046
668

