Page 141 - IJOCTA-15-4
P. 141
Fixed-time sliding mode control with disturbance observer and variable exponent coefficient for nonlinear
systems
Theory Appl. 2015;9(4):545-552. 27. Zhang L, Wei C, Jing L, Cui N. Fixed-time sliding
https://doi.org/10.1049/iet-cta.2014.0202 mode attitude tracking control for a submarine-
15. Ahmed S, Azar AT. Predefined-time fractional- launched missile with multiple disturbances. Non-
order terminal SMC for robot dynamics. Int J linear Dyn. 2018;93:2543-2563.
Optim Control: Theor Appl. 2025;15(3):426-434. https://doi.org/10.1007/s11071-018-4341-8
https://doi.org/10.36922/IJOCTA025060020 28. Ni J, Liu L, Liu C, Hu X, Li S. Fast fixed-time
16. Feng Y, Yu X, Man Z. Non-singular terminal slid- nonsingular terminal sliding mode control and its
ing mode control of rigid manipulators. Automat- application to chaos suppression in power sys-
ica. 2002;38(12):2159-2167. tem. IEEE Trans Circuits Syst II Exp Briefs.
https://doi.org/10.1016/S0005-1098(02)00147-4 2016;64(2):151-155.
17. Yu S, Yu X, Shirinzadeh B, Man Z. Contin- https://doi.org/10.1109/TCSII.2016.2551539
uous finite-time control for robotic manipula- 29. Wang L, Du H, Zhang W, Wu D, Zhu W. Imple-
tors with terminal sliding mode. Automatica. mentation of integral fixed-time sliding mode con-
2005;41(11):1957-1964. troller for speed regulation of PMSM servo sys-
https://doi.org/10.1016/j.automatica.2005.07.001 tem. Nonlinear Dyn. 2020;102:185-196.
18. Wang L, Chai T, Zhai L. Neural-network-based https://doi.org/10.1007/s11071-020-05938-3
terminal sliding-mode control of robotic manipu- 30. Zuo Z, Tie L. A new class of finite-time nonlinear
lators including actuator dynamics. IEEE Trans consensus protocols for multi-agent systems. Int
Ind Electron. 2009;56(9):3296-3304. J Control. 2014;87(2):363-370.
https://doi.org/10.1109/TIE.2008.2011350 https://doi.org/10.1080/00207179.2013.834484
19. Bakouri M, Alqarni A, Alanazi S, et al. Robust 31. Chen C, Li L, Peng H, et al. A new fixed-time
dynamic control algorithm for uncertain pow- stability theorem and its application to the fixed-
ered wheelchairs based on sliding neural net- time synchronization of neural networks. Neural
work approach. AIMS Math. 2023;8(11):26821- Netw. 2020;123:412-419.
26839. https://doi.org/10.1016/j.neunet.2019.12.028
https://doi.org/10.3934/math.20231373 32. Zhao L, Jia Y. Decentralized adaptive attitude
20. Ghasemi M, Nersesov SG. Finite-time coordina- synchronization control for spacecraft formation
tion in multiagent systems using sliding mode using nonsingular fast terminal sliding mode.
control approach. Automatica. 2014;50(4):1209- Nonlinear Dyn. 2014;78:2779-2794.
1216. https://doi.org/10.1007/s11071-014-1625-5
https://doi.org/10.1016/j.automatica. 33. Chen M, Wu QX, Cui RX. Terminal sliding mode
2014.02.019 tracking control for a class of SISO uncertain non-
21. Feng Y, Yu X, Han F. On nonsingular terminal linear systems. ISA Trans. 2013;52(2):198-206.
sliding-mode control of nonlinear systems. Auto- https://doi.org/10.1016/j.isatra.2012.09.009
matica. 2013;49(6):1715-1722. 34. Yang J, Li S, Yu X. Sliding-mode control for sys-
https://doi.org/10.1016/j.automatica.2013.01.051 tems with mismatched uncertainties via a dis-
22. Polyakov A. Nonlinear feedback design for fixed- turbance observer. IEEE Trans Ind Electron.
time stabilization of linear control systems. 2012;60(1):160-169.
IEEE Trans Autom Control. 2011;57(8):2106- https://doi.org/10.1109/TIE.2012.2183841
2110. 35. Hua C, Li J, Yang Y, Guan X. Extended-state-
https://doi.org/10.1109/TAC.2011.2179869 observer-based finite-time synchronization con-
23. Wang C, Tnunay H, Zuo Z, Lennox B, Ding Z. trol design of teleoperation with experimental val-
Fixed-time formation control of multirobot sys- idation. Nonlinear Dyn. 2016;85:317-331.
tems: design and experiments. IEEE Trans Ind https://doi.org/10.1007/s11071-016-2687-3
Electron. 2018;66(8):6292-6301. 36. Li S, Sun H, Yang J, Yu X. Continuous finite-
https://doi.org/10.1109/TIE.2018.2870409 time output regulation for disturbed systems un-
24. Du H, Wen G, Wu D, Cheng Y, L¨u J. Dis- der mismatching condition. IEEE Trans Autom
tributed fixed-time consensus for nonlinear Control. 2014;60(1):277-282.
heterogeneous multi-agent systems. Automatica. https://doi.org/10.1109/TAC.2014.2324212
2020;113:108797. 37. Chen WH, Yang J, Guo L, Li S. Disturbance-
https://doi.org/10.1016/j.automatica.2019.108797 observer-based control and related meth-
25. Pan Y, Du P, Xue H, Lam HK. Singularity- ods—an overview. IEEE Trans Ind Electron.
free fixed-time fuzzy control for robotic systems 2015;63(2):1083-1095.
with user-defined performance. IEEE Trans Fuzzy https://doi.org/10.1109/TIE.2015.2478397
Syst. 2020;29(8):2388-2398. 38. Zhang L, Wei C, Wu R, Cui N. Fixed-time ex-
https://doi.org/10.1109/TFUZZ.2020.2999746 tended state observer based non-singular fast ter-
26. Golestani M, Esmaeilzadeh SM, Mobayen S. minal sliding mode control for a VTVL reusable
Fixed-time control for high-precision attitude sta- launch vehicle. Aerosp Sci Technol. 2018;82:70-79.
bilization of flexible spacecraft. Eur J Control. https://doi.org/10.1016/j.ast.2018.08.028
2021;57:222-231. 39. Ding B, Xu D, Jiang B, Shi P, Yang
https://doi.org/10.1016/j.ejcon.2020.05.006 W. Disturbance-observer-based terminal sliding
683

