Page 141 - IJOCTA-15-4
P. 141

Fixed-time sliding mode control with disturbance observer and variable exponent coefficient for nonlinear
                                                         systems
                Theory Appl. 2015;9(4):545-552.               27. Zhang L, Wei C, Jing L, Cui N. Fixed-time sliding
                https://doi.org/10.1049/iet-cta.2014.0202         mode attitude tracking control for a submarine-
             15. Ahmed S, Azar AT. Predefined-time fractional-    launched missile with multiple disturbances. Non-
                order terminal SMC for robot dynamics. Int J      linear Dyn. 2018;93:2543-2563.
                Optim Control: Theor Appl. 2025;15(3):426-434.    https://doi.org/10.1007/s11071-018-4341-8
                https://doi.org/10.36922/IJOCTA025060020      28. Ni J, Liu L, Liu C, Hu X, Li S. Fast fixed-time
             16. Feng Y, Yu X, Man Z. Non-singular terminal slid-  nonsingular terminal sliding mode control and its
                ing mode control of rigid manipulators. Automat-  application to chaos suppression in power sys-
                ica. 2002;38(12):2159-2167.                       tem. IEEE Trans Circuits Syst II Exp Briefs.
                https://doi.org/10.1016/S0005-1098(02)00147-4     2016;64(2):151-155.
             17. Yu S, Yu X, Shirinzadeh B, Man Z. Contin-        https://doi.org/10.1109/TCSII.2016.2551539
                uous finite-time control for robotic manipula-  29. Wang L, Du H, Zhang W, Wu D, Zhu W. Imple-
                tors with terminal sliding mode. Automatica.      mentation of integral fixed-time sliding mode con-
                2005;41(11):1957-1964.                            troller for speed regulation of PMSM servo sys-
                https://doi.org/10.1016/j.automatica.2005.07.001  tem. Nonlinear Dyn. 2020;102:185-196.
             18. Wang L, Chai T, Zhai L. Neural-network-based     https://doi.org/10.1007/s11071-020-05938-3
                terminal sliding-mode control of robotic manipu-  30. Zuo Z, Tie L. A new class of finite-time nonlinear
                lators including actuator dynamics. IEEE Trans    consensus protocols for multi-agent systems. Int
                Ind Electron. 2009;56(9):3296-3304.               J Control. 2014;87(2):363-370.
                https://doi.org/10.1109/TIE.2008.2011350          https://doi.org/10.1080/00207179.2013.834484
             19. Bakouri M, Alqarni A, Alanazi S, et al. Robust  31. Chen C, Li L, Peng H, et al. A new fixed-time
                dynamic control algorithm for uncertain pow-      stability theorem and its application to the fixed-
                ered wheelchairs based on sliding neural net-     time synchronization of neural networks. Neural
                work approach. AIMS Math. 2023;8(11):26821-       Netw. 2020;123:412-419.
                26839.                                            https://doi.org/10.1016/j.neunet.2019.12.028
                https://doi.org/10.3934/math.20231373         32. Zhao L, Jia Y. Decentralized adaptive attitude
             20. Ghasemi M, Nersesov SG. Finite-time coordina-    synchronization control for spacecraft formation
                tion in multiagent systems using sliding mode     using nonsingular fast terminal sliding mode.
                control approach. Automatica. 2014;50(4):1209-    Nonlinear Dyn. 2014;78:2779-2794.
                1216.                                             https://doi.org/10.1007/s11071-014-1625-5
                https://doi.org/10.1016/j.automatica.         33. Chen M, Wu QX, Cui RX. Terminal sliding mode
                2014.02.019                                       tracking control for a class of SISO uncertain non-
             21. Feng Y, Yu X, Han F. On nonsingular terminal     linear systems. ISA Trans. 2013;52(2):198-206.
                sliding-mode control of nonlinear systems. Auto-  https://doi.org/10.1016/j.isatra.2012.09.009
                matica. 2013;49(6):1715-1722.                 34. Yang J, Li S, Yu X. Sliding-mode control for sys-
                https://doi.org/10.1016/j.automatica.2013.01.051  tems with mismatched uncertainties via a dis-
             22. Polyakov A. Nonlinear feedback design for fixed-  turbance observer. IEEE Trans Ind Electron.
                time stabilization of linear control systems.     2012;60(1):160-169.
                IEEE Trans Autom Control. 2011;57(8):2106-        https://doi.org/10.1109/TIE.2012.2183841
                2110.                                         35. Hua C, Li J, Yang Y, Guan X. Extended-state-
                https://doi.org/10.1109/TAC.2011.2179869          observer-based finite-time synchronization con-
             23. Wang C, Tnunay H, Zuo Z, Lennox B, Ding Z.       trol design of teleoperation with experimental val-
                Fixed-time formation control of multirobot sys-   idation. Nonlinear Dyn. 2016;85:317-331.
                tems: design and experiments. IEEE Trans Ind      https://doi.org/10.1007/s11071-016-2687-3
                Electron. 2018;66(8):6292-6301.               36. Li S, Sun H, Yang J, Yu X. Continuous finite-
                https://doi.org/10.1109/TIE.2018.2870409          time output regulation for disturbed systems un-
             24. Du H, Wen G, Wu D, Cheng Y, L¨u J. Dis-          der mismatching condition. IEEE Trans Autom
                tributed  fixed-time  consensus  for  nonlinear   Control. 2014;60(1):277-282.
                heterogeneous multi-agent systems. Automatica.    https://doi.org/10.1109/TAC.2014.2324212
                2020;113:108797.                              37. Chen WH, Yang J, Guo L, Li S. Disturbance-
                https://doi.org/10.1016/j.automatica.2019.108797  observer-based  control  and  related  meth-
             25. Pan Y, Du P, Xue H, Lam HK. Singularity-         ods—an overview. IEEE Trans Ind Electron.
                free fixed-time fuzzy control for robotic systems  2015;63(2):1083-1095.
                with user-defined performance. IEEE Trans Fuzzy   https://doi.org/10.1109/TIE.2015.2478397
                Syst. 2020;29(8):2388-2398.                   38. Zhang L, Wei C, Wu R, Cui N. Fixed-time ex-
                https://doi.org/10.1109/TFUZZ.2020.2999746        tended state observer based non-singular fast ter-
             26. Golestani M, Esmaeilzadeh SM, Mobayen S.         minal sliding mode control for a VTVL reusable
                Fixed-time control for high-precision attitude sta-  launch vehicle. Aerosp Sci Technol. 2018;82:70-79.
                bilization of flexible spacecraft. Eur J Control.  https://doi.org/10.1016/j.ast.2018.08.028
                2021;57:222-231.                              39. Ding  B,  Xu   D,  Jiang  B,  Shi  P,  Yang
                https://doi.org/10.1016/j.ejcon.2020.05.006       W. Disturbance-observer-based terminal sliding
                                                           683
   136   137   138   139   140   141   142   143   144   145   146