Page 140 - IJOCTA-15-4
P. 140
Anjum et al. / IJOCTA, Vol.15, No.4, pp.670-685 (2025)
the presence of measurement noise and additional 3. Aslam MS, Zhenhua M, Ullah R, Li Y, Sheng A,
nonlinearities, such as dead zones and input satu- Majid A. Stability and admissibility analysis of
ration, along with experimental validation of the T–S descriptive systems and its applications. Soft
proposed approach. In addition, the proposed Comput. 2022;26(15):7159-7166.
fixed-time control framework could be extended https://doi.org/10.1007/s00500-022-07323-1
4. Purwar S, Kar IN, Jha AN. Adaptive output feed-
to fractional-order systems, which may further en-
back tracking control of robot manipulators us-
hance control precision and robustness in complex
ing position measurements only. Expert Syst Appl.
nonlinear environments.
2008;34(4):2789-2798.
https://doi.org/10.1016/j.eswa.2007.05.030
Acknowledgments
5. Shojaei K, Shahri AM, Tarakameh A. Adap-
None. tive feedback linearizing control of nonholonomic
wheeled mobile robots in presence of parametric
Funding and nonparametric uncertainties. Rob Comput In-
tegr Manuf. 2011;27(1):194-204.
The authors would like to thank the Natu- https://doi.org/10.1016/j.rcim.2010.07.007
ral Science Funding of Fujian Province, China 6. Kaveh A, Vahedi M, Gandomkar M. Improving
(Grant/Award Number: 2024J011561) for their the performance of a chaotic nonlinear system of
support in this research. fractional-order brushless direct current electric
motor using fractional-order sliding mode control.
Conflict of interest Int J Optim Control: Theor Appl. 2025;15(3):
379-395.
The authors declare that they have no conflict of
https://doi.org/10.36922/ijocta.8407
interest regarding the publication of this article. 7. Yavuz M, Ozt¨urk M, Ya¸skıran B. Comparison of
¨
fractional order sliding mode controllers on robot
Author contributions manipulator. Int J Optim Control: Theor Appl.
2025;15(2):281-293.
Conceptualization: Zeeshan Anjum, Wen-Jer
https://doi.org/10.36922/ijocta.1678
Chang
8. Mohan Raja M, Vijayakumar V, Veluvolu KC,
Formal analysis: Zeeshan Anjum, Muhammad
Shukla A, Nisar KS. Existence and optimal con-
Shamrooz Aslam, Rizwan Ullah
trol results for Caputo fractional delay Clark’s
Investigation: Zeeshan Anjum, Wen-Jer Chang,
sub differential inclusions of order r (1,2) with
Muhammad Shamrooz Aslam sectorial operators. Optim Control Appl Methods.
Methodology: Zeeshan Anjum, Rizwan Ullah 2024;45(4):1832-1850.
Writing–original draft: Zeeshan Anjum, Wen-Jer https://doi.org/10.1002/oca.3125
Chang 9. Raja MM, Vijayakumar V, Veluvolu KC. Im-
Writing–review & editing: Zeeshan Anjum, Wen- proved order in Hilfer fractional differential sys-
Jer Chang, Muhammad Shamrooz Aslam tems: solvability and optimal control problem for
hemivariational inequalities. Chaos Solitons Frac-
Availability of data tals. 2024;188:115558.
https://doi.org/10.1016/j.chaos.2024.115558
Not applicable. 10. Shtessel Y, Edwards C, Fridman L, Levant A.
Sliding Mode Control and Observation. Vol 10.
AI tools statement Springer; 2014.
11. Aslam MS, Qaisar I, Majid A, Ramaraj P. De-
All authors confirm that no AI tools were used in
sign of sliding mode controller for sensor/actuator
the preparation of this manuscript.
fault with unknown input observer for satellite
control system. Soft Comput. 2021;25(24):14993-
References
15003.
1. Nikdel N, Badamchizadeh M, Azimirad V, Nazari https://doi.org/10.1007/s00500-021-06420-x
M. Adaptive backstepping control for an n-degree 12. Ren C, Li X, Yang X, Ma S. Extended state
of freedom robotic manipulator based on com- observer-based sliding mode control of an omni-
bined state augmentation. Rob Comput Integr directional mobile robot with friction compensa-
Manuf. 2017;44:129-143. tion. IEEE Trans Ind Electron. 2019;66(12):9480-
https://doi.org/10.1016/j.rcim.2016.08.007 9489.
2. Aslam MS, Tiwari P, Pandey HM, Band SS, El https://doi.org/10.1109/TIE.2019.2892678
Sayed H. A delayed Takagi–Sugeno fuzzy control 13. Venkataraman S, Gulati S. Control of Nonlinear
approach with uncertain measurements using an Systems Using Terminal Sliding Modes. IEEE;
extended sliding mode observer. Inf Sci (NY). 1993.
2023;643:119204. 14. Zuo Z. Non-singular fixed-time terminal sliding
https://doi.org/10.1016/j.ins.2023.119204 mode control of non-linear systems. IET Control
682

