Page 140 - IJOCTA-15-4
P. 140

Anjum et al. / IJOCTA, Vol.15, No.4, pp.670-685 (2025)
            the presence of measurement noise and additional   3. Aslam MS, Zhenhua M, Ullah R, Li Y, Sheng A,
            nonlinearities, such as dead zones and input satu-    Majid A. Stability and admissibility analysis of
            ration, along with experimental validation of the     T–S descriptive systems and its applications. Soft
            proposed approach.    In addition, the proposed       Comput. 2022;26(15):7159-7166.
            fixed-time control framework could be extended        https://doi.org/10.1007/s00500-022-07323-1
                                                               4. Purwar S, Kar IN, Jha AN. Adaptive output feed-
            to fractional-order systems, which may further en-
                                                                  back tracking control of robot manipulators us-
            hance control precision and robustness in complex
                                                                  ing position measurements only. Expert Syst Appl.
            nonlinear environments.
                                                                  2008;34(4):2789-2798.
                                                                  https://doi.org/10.1016/j.eswa.2007.05.030
            Acknowledgments
                                                               5. Shojaei K, Shahri AM, Tarakameh A. Adap-
            None.                                                 tive feedback linearizing control of nonholonomic
                                                                  wheeled mobile robots in presence of parametric
            Funding                                               and nonparametric uncertainties. Rob Comput In-
                                                                  tegr Manuf. 2011;27(1):194-204.
            The authors would like to thank the Natu-             https://doi.org/10.1016/j.rcim.2010.07.007
            ral Science Funding of Fujian Province, China      6. Kaveh A, Vahedi M, Gandomkar M. Improving
            (Grant/Award Number: 2024J011561) for their           the performance of a chaotic nonlinear system of
            support in this research.                             fractional-order brushless direct current electric
                                                                  motor using fractional-order sliding mode control.
            Conflict of interest                                  Int J Optim Control: Theor Appl. 2025;15(3):
                                                                  379-395.
            The authors declare that they have no conflict of
                                                                  https://doi.org/10.36922/ijocta.8407
            interest regarding the publication of this article.  7. Yavuz M, Ozt¨urk M, Ya¸skıran B. Comparison of
                                                                           ¨
                                                                  fractional order sliding mode controllers on robot
            Author contributions                                  manipulator. Int J Optim Control: Theor Appl.
                                                                  2025;15(2):281-293.
            Conceptualization:   Zeeshan Anjum, Wen-Jer
                                                                  https://doi.org/10.36922/ijocta.1678
            Chang
                                                               8. Mohan Raja M, Vijayakumar V, Veluvolu KC,
            Formal analysis: Zeeshan Anjum, Muhammad
                                                                  Shukla A, Nisar KS. Existence and optimal con-
            Shamrooz Aslam, Rizwan Ullah
                                                                  trol results for Caputo fractional delay Clark’s
            Investigation: Zeeshan Anjum, Wen-Jer Chang,
                                                                  sub differential inclusions of order r (1,2) with
            Muhammad Shamrooz Aslam                               sectorial operators. Optim Control Appl Methods.
            Methodology: Zeeshan Anjum, Rizwan Ullah              2024;45(4):1832-1850.
            Writing–original draft: Zeeshan Anjum, Wen-Jer        https://doi.org/10.1002/oca.3125
            Chang                                              9. Raja MM, Vijayakumar V, Veluvolu KC. Im-
            Writing–review & editing: Zeeshan Anjum, Wen-         proved order in Hilfer fractional differential sys-
            Jer Chang, Muhammad Shamrooz Aslam                    tems: solvability and optimal control problem for
                                                                  hemivariational inequalities. Chaos Solitons Frac-
            Availability of data                                  tals. 2024;188:115558.
                                                                  https://doi.org/10.1016/j.chaos.2024.115558
            Not applicable.                                   10. Shtessel Y, Edwards C, Fridman L, Levant A.
                                                                  Sliding Mode Control and Observation. Vol 10.
            AI tools statement                                    Springer; 2014.
                                                              11. Aslam MS, Qaisar I, Majid A, Ramaraj P. De-
            All authors confirm that no AI tools were used in
                                                                  sign of sliding mode controller for sensor/actuator
            the preparation of this manuscript.
                                                                  fault with unknown input observer for satellite
                                                                  control system. Soft Comput. 2021;25(24):14993-
            References
                                                                  15003.
              1. Nikdel N, Badamchizadeh M, Azimirad V, Nazari    https://doi.org/10.1007/s00500-021-06420-x
                M. Adaptive backstepping control for an n-degree  12. Ren C, Li X, Yang X, Ma S. Extended state
                of freedom robotic manipulator based on com-      observer-based sliding mode control of an omni-
                bined state augmentation. Rob Comput Integr       directional mobile robot with friction compensa-
                Manuf. 2017;44:129-143.                           tion. IEEE Trans Ind Electron. 2019;66(12):9480-
                https://doi.org/10.1016/j.rcim.2016.08.007        9489.
              2. Aslam MS, Tiwari P, Pandey HM, Band SS, El       https://doi.org/10.1109/TIE.2019.2892678
                Sayed H. A delayed Takagi–Sugeno fuzzy control  13. Venkataraman S, Gulati S. Control of Nonlinear
                approach with uncertain measurements using an     Systems Using Terminal Sliding Modes. IEEE;
                extended sliding mode observer. Inf Sci (NY).     1993.
                2023;643:119204.                              14. Zuo Z. Non-singular fixed-time terminal sliding
                https://doi.org/10.1016/j.ins.2023.119204         mode control of non-linear systems. IET Control
                                                           682
   135   136   137   138   139   140   141   142   143   144   145