Page 74 - IJOCTA-15-4
P. 74

B. Shiri et.al. / IJOCTA, Vol.15, No.4, pp.610-624 (2025)
            and the fractional nabla difference is defined as  Theorem 8. Suppose x i ∈ R F , i = 1, . . . , ν.
                            N
                   α
                 ∇ x(t) = ∇ ∇   −(N−α) x(t),  t ∈ N a+N ,     Then, H-difference
                                                              O −(1−⃗α) ⃗x(t−1) = ∇ −(1−⃗α) ⃗x(t−1)⊖T  −(1−⃗α) ⃗x(t−1)
            where ∇x(t) = x(t) − x(t − 1), and N a = {a, a +
            1, · · · }.                                       is feasible and
            Definition 4. Let α ∈ (0, 1] and x : N a → R F .       O −(1−⃗α) ⃗x(t − 1) =
            Then, the fractional nabla H-difference is defined              t−1
                                                                       ⃗ α  X    Γ(t − s − ⃗α)           (32)
            as                                                                                 ⃗x(s).
                                                                   Γ(1 − ⃗α)      Γ(t − s + 1)
                α
              ∇ x(t) =∇∇   −(1−α) x(t)                                      s=0
                                                       (25)   Proof. First, we observe that for s = 0, · · · , t−1,
                      =∇ −(1−α) x(t) ⊖ ∇ −(1−α) x(t − 1),
                                                                  (t − s − α i )Γ(t − s − α i )  Γ(t − s − α i )
            for t ∈ N a+1 . If Equation (25) is feasible, we say                          <              ,
                                                                      (t − s)Γ(t − s)          Γ(t − s)
            it is fractional nabla H-differenceable.
                                                              and thus
                It is useful to decompose ∇  −(1−α) x(t) into          Γ(t + 1 − s − α i )  Γ(t − s − α i )
                                                                   0 ≤                  <              .
            peak and tail operators.                                      Γ(t + 1 − s)       Γ(t − s)
                                     t
                               1    X   Γ(t − s + (1 − α))    Therefore, the H-differences
              −(1−α)
            ∇       x(t) =                               x(s)
                           Γ(1 − α)       Γ(t − s + 1)                     1     Γ(t − s − α i )
                                    s=0                                                      x i (s)⊖
                                                                       Γ(1 − α i )  Γ(t − s)
                                    t−1
                              1     X  Γ(t − s + (1 − α))
                  =x(t) ⊕                                x(s).            1     Γ(t + 1 − s − α i )x i (s)
                           Γ(1 − α)       Γ(t − s + 1)
                                    s=0                               Γ(1 − α i )   Γ(t + 1 − s)
                                                       (26)
                                                              are feasible for s = 0, · · · , t − 1. Especially, their
            Thus, x(t) is the peak operator and               sum is also nabla H-differenceable and
                               t−1                                   O −(1−⃗α) x i (t − 1)
                               X    Γ(t − s + (1 − α))
            T  −(1−α) x(t − 1) :=                     x(s),
                                   Γ(1 − α)Γ(t − s + 1)                  1    X     Γ(t − s − α i )
                                                                               t−1
                               s=0                                 =
            is the tail operator. We can rewrite Equation (26)       Γ(1 − α i )  s=0  Γ(t − s)
            as                                                         Γ(t + 1 − s − α i )
                                                                     −                   x i (s)
                ∇ −(1−α) x(t) = x(t) ⊕ T  −(1−α) x(t − 1).  (27)          Γ(t + 1 − s)
                                                                               t−1
                                                                         1    X     Γ(t − s − α i )      (33)
                                                                   =
            3. Analysis of solution                                  Γ(1 − α i )      Γ(t − s)
                                                                              s=0
            The first question is whether there exists an H-              (t − s − α i )
            differenceable solution for System Equation (1) if       (1 −   (t − s)  ) x i (s)
            x i (0) ∈ R F . We build a constructive method to
                                                                               t−1
            obtain the fuzzy solution of Equation (2) based        =    α i   X   Γ(t − s − α i ) x i (s).
            on the H-difference operator. Equation (2) for           Γ(1 − α i )   Γ(t − s + 1)
                                                                              s=0
            fuzzy inputs is
                                                                                                           □
                         ⃗ α
                       ∇ ⃗x(t) = ⃗q(W⃗x(t − 1) ⃗ ⊕⃗p).  (28)
                                                                  Taking into account Theorem 8, System
            Using Equation (25), we obtain                    Equation (31) can be written as
            ∇ −(1−⃗α) ⃗x(t) ⃗ ⊖∇ −(1−⃗α) ⃗x(t−1) = ⃗q(W⃗x(t−1) ⃗ ⊕⃗p).  ⃗x(t) =O −(1−⃗α) ⃗x(t − 1) ⃗ ⊕⃗q(W⃗x(t − 1) ⃗ ⊕⃗p). (34)
                                                       (29)
            Since the fuzzy difference is Hukuhara type, we   Since Equation (34) expresses ⃗x(t) in terms of
                                                              ⃗x(t − 1), ⃗x(t) can be obtained recursively.
            can rewrite
            ∇ −(1−⃗α) ⃗x(t) = ∇ −(1−⃗α) ⃗x(t − 1) ⃗ ⊕⃗q(W⃗x(t − 1) ⃗ ⊕⃗p)  Theorem 9. System Equation (28) subject to in-
                                                       (30)   put ⃗x(0) = ⃗x 0 has a unique H-difference solution.
            where ⃗ ⊕ and ⃗ ⊖ stand for the element-wise fuzzy  Proof. We start with t = 1 to initiate the induc-
            sum and H-difference, respectively. Using the de-  tion process. Then,
            composition in Equation (27), we get                       −(1−⃗α)      −(1−⃗α)
                                                              ⃗x(1) = ∇      ⃗x(0) ⃗ ⊖T   ⃗x(0) ⃗ ⊕⃗q(W⃗x(0) ⃗ ⊕⃗p).
               ⃗x(t) ⃗ ⊕T −(1−⃗α) ⃗x(t − 1) =                                                            (35)
                                                       (31)   From Theorem 8,
                   ∇ −(1−⃗α) ⃗x(t − 1) ⃗ ⊕⃗q(W⃗x(t − 1) ⃗ ⊕⃗p).
                                                                      ∇ −(1−⃗α) ⃗x(0) ⃗ ⊖T −(1−⃗α) ⃗x(0) = ⃗α⃗x 0
                                                           616
   69   70   71   72   73   74   75   76   77   78   79