Page 76 - IJOCTA-15-4
P. 76

B. Shiri et.al. / IJOCTA, Vol.15, No.4, pp.610-624 (2025)
            where                                             1)), which reflects its scalability with respect to
                           ν                                  parameters ν and t.
               ˜
                          X
               d i (t − 1) =  w ij d j (t − 1) + p i ,
                                                                                                      [0]  [0]
                          j=1                                        (1) Input data: x i (0) ∼ (d i (0), f , g ) for
                                                                                                      i   i
                           ν                                             i = 1, . . . , ν.
                          X
                  f ˜ [t−1]  =  |w ij |k(f [t−1] , g [t−1] , sgn(w ij )),  (2) Input parameters: T, ⃗p, W, ⃗q.
                   i                j     j
                          j=1                                        (3) Output: x i (T) ∼ (d i (T), f [T] , g [T] ) for
                           ν                                                                         i   i
                   [t−1]  X         [t−1]  [t−1]                         i = 1, . . . , ν.
                  ˜ g i  =   |w ij |k(g j  , f j  , sgn(w ij )),     (4) For t = 1 to T :
                          j=1                                        (5) For i = 1 to ν :
                                                       (47)
                                                                                                          ˜
                                                                          (a) Calculate z i (t − 1)  ∼   (d i (t −
            for t = 1, . . . , T − 1.                                            ˜ [t−1]  [t−1]
                                                                             1), f   , ˜g  ) using Equation (47).
                                                                                 i     i
                From Corollary 1, we obtain                                              ˜        ˜ [t−1]  [t−1]
                                                                                                  ˜
                                                                                         ˜
                                                                                                       ˜
                                                                         (b) Calculate (d i (t−1), f i  , ˜g i  ) us-
                                      ˜        ˜      [t−1]
                                      ˜
                                               ˜ [t−1]
                                                     ˜
            ∇ x i (t) = q i (z i (t−1)) ∼ (d i (t−1), f  , ˜g  ),            ing Equation (49).
              α i
                                                i     i
                                                                                                          [t]
                                                                                                              [t]
                                                       (48)               (c) Calculate x i (t) ∼ (d i (t), f , g )
                                                                                                          i   i
                                                                             using Equation (51).
                                                                                                          T
            where                                                    (6) Return ⃗x(T) = [x 1 (T), . . . , x ν (T)] .
              ˜
                           ˜
              ˜
              d i (t − 1) = q i (d i (t − 1)),
              ˜ [t−1]    ˜            ˜          ˜ [t−1]            Algorithm 1. Fuzzy solution of System (2)
              ˜
                         ˜
              f    (r) = d i (t − 1) − q i (d i (t − 1) − f  (r)),
               i                                  i
                                                 ˜
                           ˜
                                                 ˜
              ˜ i [t−1] (r) = q i (d i (t − 1) + ˜g i [t−1] (r)) − d i (t − 1).  5. Illustrations and examples
              ˜ g
                                                       (49)
                                                              In this section, we present simpler examples to
            It follows from Equations (34) and (32) that
                                                              ensure understanding of the analysis and notation
                                                    !
                              t−1
                        ⃗ α   X    Γ(t − s − ⃗α)              used throughout this paper. The first example de-
                                                       ⃗
            ⃗x(t) =                              ⃗x(s) ⊕⃗q(⃗z).  tails the implementation of Algorithm 1 for a 2D
                     Γ(1 − ⃗α)     Γ(t − s + 1)
                              s=0                             IFDS. The second example demonstrates an ap-
                                                       (50)
                                                              plication of the proposed incommensurate RNN
            Finally, since α i ≥ 0 and t > 1, the coefficients
                                                              for local prediction of time series. These exam-
                            α i   Γ(t − s − α i )             ples include the necessary computations to train
                         Γ(1 − α i ) Γ(t − s + 1)             the incommensurate RNN and to obtain the in-
            are positive for s = 0, . . . , t − 1. Thus,      commensurate order ⃗α.
                                t−1
                          α i   X    Γ(t − s − α i )
               d i (t) =                            d i (s)
                      Γ(1 − α i )     Γ(t − s + 1)            5.1. Illustrative example
                                s=0
                         ˜                                    We consider a 2D NN. Let us consider
                         ˜
                      + d i (t − 1),
                                                                x 1 (0)(w) =
                                t−1
               [t]        α i   X    Γ(t − s − α i )  [s]                     2  2
              f (r) =                               f (r)          1 − (w − d 1 ) /ϵ , w ∈ [−ϵ + d 1 , d 1 + ϵ],
               i      Γ(1 − α i )     Γ(t − s + 1)   i
                                s=0                                0,                oth.,
                         ˜ [t−1]                                                                         (52)
                         ˜
                      + f     (r),
                          i
                                                              and
                                t−1
               [t]        α i   X    Γ(t − s − α i )  [s]        x 2 (0)(w) =
              g (r) =                               g (r)
               i                                     i
                      Γ(1 − α i )     Γ(t − s + 1)               
                                s=0                               1 + (w − d 2 )/ϵ, w ∈ [−ϵ + d 2 , d 2 ],  (53)
                         ˜
                      + ˜g [t−1] (r),                               1 − (w − d 2 )/ϵ, w ∈ [d 2 , d 2 + ϵ],
                          i
                                                                   0,              oth.,
                                                       (51)
                                       T
            and ⃗x(t) = [x 1 (t), . . . , x ν (t)] .          where d 1 , d 2 and ϵ > 0 are real numbers. Figure
                                                              1 demonstrates these membership functions for
                We summarized the method in Algorithm 1.      d 1 = 1, d 2 = 2, and ϵ = 1. To find the boundaries
                                                              of C x 1 (0) (r), we solve the inverse problem
            Remark 4. The computational complexities of                                2  2
                                                                            1 − (w − d 1 ) /ϵ = r
            Equations (47), (49), and (51) are O(ν), O(ν),
                                                              and thus the boundaries are
            and O(νt) for each t. Consequently, the complex-                           √
            ity of Algorithm 1 for computing ⃗x(t) is O(νt(t −               w = d 1 ± ϵ 1 − r.
                                                           618
   71   72   73   74   75   76   77   78   79   80   81