Page 81 - IJOCTA-15-4
P. 81

Analysis and analytical solution of incommensurate fuzzy fractional nabla difference systems...

              6. Shiri B, Shi YG, Baleanu D. The well-posedness   uncertainties. ISA Trans. 2023;137:275–287.
                of incommensurate FDEs in the space of contin-    http://dx.doi.org/ 10.1016/j.isatra.2023.01.016
                uous functions. Symmetry. 2024;16(8):1058.    18. Muhammad G, Akram M, Hussain N, Allahviran-
                http://dx.doi.org/ 10.3390/sym16081058            loo T. Fuzzy Langevin fractional delay differen-
              7. Shiri B. Well-posedness of the mild solutions for  tial equations under granular derivative. Inf Sci.
                incommensurate systems of delay fractional dif-   2024;681:121250.
                ferential equations. Fractal Fract. 2025;9(2):60.  http://dx.doi.org/ 10.1016/j.ins.2024.121250
                http://dx.doi.org/ 10.3390/fractalfract9020060  19. Muhammad G, Akram M. Fuzzy fractional
              8. Akram M, Muhammad G, Allahviranloo T,            generalized Bagley–Torvik equation with fuzzy
                Pedrycz W. Incommensurate non-homogeneous         Caputo  gH-differentiability. Eng Appl Artif
                system of fuzzy linear fractional differential equa-  Intell. 2024;133:108265.
                tions using the fuzzy bunch of real functions.    http://dx.doi.org/ 10.1016/j.engappai.2024.108265
                Fuzzy Sets Syst. 2023;473:108725.             20. Muhammad G, Akram M. Fuzzy fractional epi-
                http://dx.doi.org/ 10.1016/j.fss.2023.108725      demiological model for Middle East respira-
              9. Abbes A, Ouannas A, Shawagfeh N. An incom-       tory syndrome coronavirus on complex heteroge-
                mensurate fractional discrete macroeconomic sys-  neous network using Caputo derivative. Inf Sci.
                tem: bifurcation, chaos, and complexity. Chin     2024;659:120046.
                Phys B. 2023;32(3):030203.                        http://dx.doi.org/ 10.1016/j.ins.2023.120046
                http://dx.doi.org//10.1088/1674-1056/ac7296   21. Shiri B, Baleanu D, Ma CY. Pathological study on
             10. Al-Taani H, Abu Hammad MM, Abudayah M,           uncertain numbers and proposed solutions for dis-
                Diabi L, Ouannas A. On fractional discrete mem-   crete fuzzy fractional order calculus. Open Phys.
                ristive model with incommensurate orders: sym-    2023;21(1):20230135.
                metry, asymmetry, hidden chaos and control ap-    http://dx.doi.org/ 10.1515/phys-2023-0135
                proaches. Symmetry. 2025;17(1):143.           22. Shiri B. A unified generalization for Hukuhara
                http://dx.doi.org/ 10.3390/sym17010143            types  differences  and  derivatives:  solid
             11. Shatnawi MT, Djenina N, Ouannas A, Batiha        analysis  and   comparisons.  AIMS    Math.
                IM, Grassi G. Novel convenient conditions         2023;8(1)2168–2190.
                for the stability of nonlinear incommensurate     http://dx.doi.org/ 10.3934/math.2023112
                fractional-order difference systems. Alex Eng J.  23. Dubois D, Prade H. Fuzzy numbers: an overview.
                2022;61(2):1655–1663.                             Read Fuzzy Sets Intell Syst. 1993;112–148.
                http://dx.doi.org/ 10.1016/j.aej.2021.06.073      http://dx.doi.org/  10.1016/B978-1-4832-1450-
             12. Cort´es Campos HM, G´omez-Aguilar JF, Z´u˜niga-  4.50015-8
                Aguilar CJ, Avalos-Ruiz LF, Lav´ın-Delgado JE.  24. Zadeh  LA.   Fuzzy   sets.  Inf   Control.
                Application of fractional-order integral trans-   1965;8(3):338–353.
                forms in the diagnosis of electrical system con-  http://dx.doi.org/10.1016/S0019-9958(65)
                ditions. Fractals. 2024;32(03):2450059.           90241-X
                http://dx.doi.org/ 10.1142/S0218348X24500592  25. Gao S, Zhang Z, Cao C. Multiplication operation
             13. Gong D, Wang Y. Fuzzy adaptive command-filter    on fuzzy numbers. J Softw. 2009;4(4):331–338.
                control of incommensurate fractional-order non-   http://dx.doi.org/ 10.17706/JSW
                linear systems. Entropy. 2023;25(6):893.      26. Guerra ML, Stefanini L. Approximate fuzzy arith-
                http://dx.doi.org/ 10.3390/e25060893              metic operations using monotonic interpolations.
             14. Boulkroune A, Bouzeriba A, Bouden T. Fuzzy       Fuzzy Sets Syst. 2005;150(1):5–33.
                generalized projective synchronization of incom-  http://dx.doi.org/ 10.1016/j.fss.2004.06.007
                mensurate fractional-order chaotic systems. Neu-  27. Mukherjee AK, Gazi KH, Salahshour S, Ghosh
                rocomputing. 2016;173:606–614.                    A, Mondal SP. A brief analysis and interpreta-
                http://dx.doi.org/ 10.1016/j.neucom.2015.08.003   tion on arithmetic operations of fuzzy numbers.
             15. Tavazoei M, Asemani MH. Robust stability         esults Control Optim. 2023;13:100312.
                analysis  of  incommensurate  fractional-order    http://dx.doi.org/ 10.1016/j.rico.2023.100312
                systems with time-varying interval uncertainties.  28. Stefanini L. A generalization of Hukuhara dif-
                J Frank Inst. 2020;357(18):13800–13815.           ference. In: Soft Methods for Handling Variabil-
                http://dx.doi.org/ 10.1016/j.jfranklin.2020.09.044  ity and Imprecision. Berlin, Heidelberg: Springer;
             16. Zouari  F,  Boulkroune  A,  Ibeas  A.  Neu-      2008: 203–210.
                ral adaptive quantized output-feedback control-   http://dx.doi.org/ 10.1007/978-3-540-85027-4 2 5
                based synchronization of uncertain time-delay  29. Goodfellow I, Bengio Y, Courville A. Deep Learn-
                incommensurate fractional-order chaotic sys-      ing. MIT Press; 2016.
                tems with input nonlinearities. Neurocomputing.
                2017;237:200–225.                             Babak Shiri obtained his Ph.D. in Applied Math-
                http://dx.doi.org/ 10.1016/j.neucom.2016.11.036  ematics (Numerical Analysis) from the Faculty of
             17. Oliva-Gonzalez LJ, Mart´ınez-Guerra R, Flores-  Mathematical Science, University of Tabriz, Iran
                Flores JP. A fractional PI observer for incommen-  (2008–2013). He currently works as a full professor at
                surate fractional order systems under parametric  Neijiang Normal University, China (2019–2025). His
                                                           623
   76   77   78   79   80   81   82   83   84   85   86