Page 81 - IJOCTA-15-4
P. 81
Analysis and analytical solution of incommensurate fuzzy fractional nabla difference systems...
6. Shiri B, Shi YG, Baleanu D. The well-posedness uncertainties. ISA Trans. 2023;137:275–287.
of incommensurate FDEs in the space of contin- http://dx.doi.org/ 10.1016/j.isatra.2023.01.016
uous functions. Symmetry. 2024;16(8):1058. 18. Muhammad G, Akram M, Hussain N, Allahviran-
http://dx.doi.org/ 10.3390/sym16081058 loo T. Fuzzy Langevin fractional delay differen-
7. Shiri B. Well-posedness of the mild solutions for tial equations under granular derivative. Inf Sci.
incommensurate systems of delay fractional dif- 2024;681:121250.
ferential equations. Fractal Fract. 2025;9(2):60. http://dx.doi.org/ 10.1016/j.ins.2024.121250
http://dx.doi.org/ 10.3390/fractalfract9020060 19. Muhammad G, Akram M. Fuzzy fractional
8. Akram M, Muhammad G, Allahviranloo T, generalized Bagley–Torvik equation with fuzzy
Pedrycz W. Incommensurate non-homogeneous Caputo gH-differentiability. Eng Appl Artif
system of fuzzy linear fractional differential equa- Intell. 2024;133:108265.
tions using the fuzzy bunch of real functions. http://dx.doi.org/ 10.1016/j.engappai.2024.108265
Fuzzy Sets Syst. 2023;473:108725. 20. Muhammad G, Akram M. Fuzzy fractional epi-
http://dx.doi.org/ 10.1016/j.fss.2023.108725 demiological model for Middle East respira-
9. Abbes A, Ouannas A, Shawagfeh N. An incom- tory syndrome coronavirus on complex heteroge-
mensurate fractional discrete macroeconomic sys- neous network using Caputo derivative. Inf Sci.
tem: bifurcation, chaos, and complexity. Chin 2024;659:120046.
Phys B. 2023;32(3):030203. http://dx.doi.org/ 10.1016/j.ins.2023.120046
http://dx.doi.org//10.1088/1674-1056/ac7296 21. Shiri B, Baleanu D, Ma CY. Pathological study on
10. Al-Taani H, Abu Hammad MM, Abudayah M, uncertain numbers and proposed solutions for dis-
Diabi L, Ouannas A. On fractional discrete mem- crete fuzzy fractional order calculus. Open Phys.
ristive model with incommensurate orders: sym- 2023;21(1):20230135.
metry, asymmetry, hidden chaos and control ap- http://dx.doi.org/ 10.1515/phys-2023-0135
proaches. Symmetry. 2025;17(1):143. 22. Shiri B. A unified generalization for Hukuhara
http://dx.doi.org/ 10.3390/sym17010143 types differences and derivatives: solid
11. Shatnawi MT, Djenina N, Ouannas A, Batiha analysis and comparisons. AIMS Math.
IM, Grassi G. Novel convenient conditions 2023;8(1)2168–2190.
for the stability of nonlinear incommensurate http://dx.doi.org/ 10.3934/math.2023112
fractional-order difference systems. Alex Eng J. 23. Dubois D, Prade H. Fuzzy numbers: an overview.
2022;61(2):1655–1663. Read Fuzzy Sets Intell Syst. 1993;112–148.
http://dx.doi.org/ 10.1016/j.aej.2021.06.073 http://dx.doi.org/ 10.1016/B978-1-4832-1450-
12. Cort´es Campos HM, G´omez-Aguilar JF, Z´u˜niga- 4.50015-8
Aguilar CJ, Avalos-Ruiz LF, Lav´ın-Delgado JE. 24. Zadeh LA. Fuzzy sets. Inf Control.
Application of fractional-order integral trans- 1965;8(3):338–353.
forms in the diagnosis of electrical system con- http://dx.doi.org/10.1016/S0019-9958(65)
ditions. Fractals. 2024;32(03):2450059. 90241-X
http://dx.doi.org/ 10.1142/S0218348X24500592 25. Gao S, Zhang Z, Cao C. Multiplication operation
13. Gong D, Wang Y. Fuzzy adaptive command-filter on fuzzy numbers. J Softw. 2009;4(4):331–338.
control of incommensurate fractional-order non- http://dx.doi.org/ 10.17706/JSW
linear systems. Entropy. 2023;25(6):893. 26. Guerra ML, Stefanini L. Approximate fuzzy arith-
http://dx.doi.org/ 10.3390/e25060893 metic operations using monotonic interpolations.
14. Boulkroune A, Bouzeriba A, Bouden T. Fuzzy Fuzzy Sets Syst. 2005;150(1):5–33.
generalized projective synchronization of incom- http://dx.doi.org/ 10.1016/j.fss.2004.06.007
mensurate fractional-order chaotic systems. Neu- 27. Mukherjee AK, Gazi KH, Salahshour S, Ghosh
rocomputing. 2016;173:606–614. A, Mondal SP. A brief analysis and interpreta-
http://dx.doi.org/ 10.1016/j.neucom.2015.08.003 tion on arithmetic operations of fuzzy numbers.
15. Tavazoei M, Asemani MH. Robust stability esults Control Optim. 2023;13:100312.
analysis of incommensurate fractional-order http://dx.doi.org/ 10.1016/j.rico.2023.100312
systems with time-varying interval uncertainties. 28. Stefanini L. A generalization of Hukuhara dif-
J Frank Inst. 2020;357(18):13800–13815. ference. In: Soft Methods for Handling Variabil-
http://dx.doi.org/ 10.1016/j.jfranklin.2020.09.044 ity and Imprecision. Berlin, Heidelberg: Springer;
16. Zouari F, Boulkroune A, Ibeas A. Neu- 2008: 203–210.
ral adaptive quantized output-feedback control- http://dx.doi.org/ 10.1007/978-3-540-85027-4 2 5
based synchronization of uncertain time-delay 29. Goodfellow I, Bengio Y, Courville A. Deep Learn-
incommensurate fractional-order chaotic sys- ing. MIT Press; 2016.
tems with input nonlinearities. Neurocomputing.
2017;237:200–225. Babak Shiri obtained his Ph.D. in Applied Math-
http://dx.doi.org/ 10.1016/j.neucom.2016.11.036 ematics (Numerical Analysis) from the Faculty of
17. Oliva-Gonzalez LJ, Mart´ınez-Guerra R, Flores- Mathematical Science, University of Tabriz, Iran
Flores JP. A fractional PI observer for incommen- (2008–2013). He currently works as a full professor at
surate fractional order systems under parametric Neijiang Normal University, China (2019–2025). His
623

