Page 75 - IJOCTA-15-4
P. 75

Analysis and analytical solution of incommensurate fuzzy fractional nabla difference systems...
            (Here, all vector operations of the same type are  and
            element-wise). Thus, ⃗x(1) exists and satisfies                    1          1
                                                                    k(u, v, s) = (u + v) + (u − v)s      (42)
                                           ⃗
                                   ⃗
                        ⃗x(1) = ⃗α⃗x 0 ⊕⃗q(W⃗x 0 ⊕⃗p).  (36)                   2          2
                                                                                      [t]     [t]
            Therefore, ⃗x(1) is unique because ⃗x 0 is unique.  is used to interchange f i  and g i  if coefficients
            We complete the proof by induction. Suppose       are negative. We note that k(u, v, 1) = u and
            there exists a unique ⃗x(i) for i < N, satisfying  k(u, v, −1) = v.
            Equation (2). We show ⃗x(N) exists and is unique.
            From Equation (34)
                                                                                                      [0]
                                                                                                          [0]
                                                                                                     ˜
                                                                                                ˜
                                                                  Now, applying q i to z i (0) ∼ (d i (0), f , ˜g )
                                N−1                   !                                             i   i
                          ⃗ α   X     Γ(N − s − ⃗α)           gives the right-hand side of the NN. Corollary 1
             ⃗x(N) =                                ⃗x(s)
                       Γ(1 − ⃗α)      Γ(N − s + 1)            plays an important role, yielding
                                s=0
                     ⃗ ⊕⃗q(W⃗x(N − 1) ⃗ ⊕⃗p).                                             ˜     ˜ [0]  [0]
                                                                                                   ˜
                                                                                          ˜
                                                                                                ˜
                                                                     α i
                                                                   ∇ x i (1) = q i (z i (0)) ∼ (d i (0), f , ˜g ),
                                                       (37)                                     i   i
            The right hand side of Equation (37) is a fuzzy
                                                              where
            combination of ⃗x(0), ⃗x(1), . . . , ⃗x(N−1). Since they
            are well-defined fuzzy numbers by the induction          ˜        ˜
                                                                     ˜
                                                                    d i (0) =q i (d i (0)),
            hypothesis, ⃗x(N) is well-defined.
                Furthermore, suppose ⃗y is another solution of
                                                                            ˜
            Equation (2). Then, it satisfies                       f (r) =d i (0) − q i (d i (0) − f (r)),  (43)
                                                                    ˜ [0]
                                                                                              [0]
                                                                            ˜
                                                                                     ˜
                                                                                             ˜
                                                                    ˜
                                                                    i                        i
                                                       !
                          ⃗ α   N−1   Γ(N − s − ⃗α)
                                X
             ⃗y(N) =                                 ⃗y(s)
                       Γ(1 − ⃗α)      Γ(N − s + 1)                 ˜ [0]      ˜       [0]      ˜
                                                                                               ˜
                                s=0                                ˜ g (r) =q i (d i (0) + ˜g (r)) − d i (0).
                                                                                      i
                                                                    i
                     ⃗ ⊕⃗q(W⃗y(N − 1) ⃗ ⊕⃗p).
                                                       (38)
            But y(s) = x(s) for s ≤ N − 1 by the uniqueness
            assumption of induction, which leads to               Since α i ≥ 0, it follows from Equation (36)
                                                              that
                                                        !

                          ⃗ α   N−1  Γ(N − s − ⃗α)
                                X
             ⃗y(N) =                                ⃗x(s)
                       Γ(1 − ⃗α)      Γ(N − s + 1)                                       [1]  [1]
                                s=0                                       x i (1) ∼ (d i (1), f , g ),   (44)
                                                                                         i
                                                                                             i
                     ⃗ ⊕⃗q(W⃗x(N − 1) ⃗ ⊕⃗p) = ⃗x(N),
                                                       (39)   where
                                                                                           ˜
                                                                                           ˜
            and it completes the proof.                  □                d i (1) =α i d i (0) + d i (0),
            4. Algorithm for finding fuzzy solution
                                                                          [1]       [0]     ˜ [0]
                                                                                            ˜
                                                                         f (r) =α i f (r) + f (r),
            A base for constructing an algorithm to compute a             i         i        i           (45)
            fuzzy solution is Equation (37) and the triple rep-
                                                         T
            resentation. Suppose ⃗x(0) = [x 1 (0), . . . , x ν (0)] ,     [1]       [0]    ˜ [0]
                                                                         g (r) =α i g (r) + ˜g (r).
                                                                          i
                                                                                            i
                                                                                    i
            is a given fuzzy input.     Let Supp(x i (0)) =
                                              [0]  [0]
            [a i (0), b i (0)], with x i (0) ∼ (d i (0), f , g ) where
                                              i
                                                  i
                                                                                           T
              [0]  [0]                                        Thus, ⃗x(1) = [x 1 (1), . . . , x ν (1)] .
            f , g i  ∈ U, for i = 1, . . . , ν. Then,
             i
                z i (0) =w i1 x 1 (0) ⊕ · · · ⊕ w iν x ν (0) + p i
                                                       (40)
                                  [0]
                              [0]
                             ˜
                        ˜
                     ∼(d(0), f , ˜g )                             We obtain ⃗x(T) for T > 1 recursively. Sup-
                              i   i                                               [t]  [t]       [0]  [0]
                                                              pose x i (t) ∼ (d i (t), f , g ) where f , g  ∈ U,
            where                                                                 i   i          i   i
                         ν                                    for t = 1, . . . , T and i = 1, . . . , ν. We derive a re-
                        X
                 ˜
                 d i (0) =  w ij d j (0) + p i ,              cursive formula for each component of the triple.
                                                              Define
                        j=1
                         ν                                                ⃗z(t − 1) = W⃗x(t − 1) ⃗ ⊕⃗p.
                                       [0]
                                   [0]
                        X
                  f ˜ [0]  =  |w ij |k(f , g , sgn(w ij )),  (41)  Then,
                   i               j   j
                        j=1
                                                              z i (t − 1) = w i1 x 1 (t − 1) ⊕ · · · ⊕ w iν x ν (t − 1) ⊕ p i
                         ν
                   [0]  X          [0]  [0]                               ˜        ˜ [t−1]  [t−1]
                  ˜ g  =   |w ij |k(g , f , sgn(w ij )),               ∼ (d(t − 1), f i  , ˜g i  ),
                   i               j   j
                        j=1                                                                              (46)
                                                           617
   70   71   72   73   74   75   76   77   78   79   80