Page 16 - JCBP-1-2
P. 16

Journal of Clinical and
            Basic Psychosomatics                                                       Melatonin for dementia therapy



            28.  Zisapel N, 2023, Melatonin-dopamine interactions: From   aggregation. J Pineal Res, 52: 312–321.
               basic neurochemistry to a clinical setting. Cell Mol Neurobiol,      https://doi.org/10.1111/j.1600-079X.2011.00945.x
               21: 605–616.
                                                               39.  Sutcu R, Yonden Z, Yilmaz A, et al., 2006, Melatonin increases
               https://doi.org/10.1023/a:1015187601628
                                                                  NMDA receptor subunits 2A and 2B concentrations in rat
            29.  Leeboonngam T, Pramong R, Sae-Ung K,  et al., 2018,   hippocampus. Mol Cell Biochem, 283: 101–105.
               Neuroprotective  effects  of  melatonin  on  amphetamine-     https://doi.org/10.1007/s11010-006-2385-4
               induced dopaminergic fiber degeneration in the
               hippocampus of postnatal rats. J Pineal Res, 64.  40.  Furuta T, Nakagawa I, Yokoyama S, et al., 2022, Melatonin-
                                                                  induced postconditioning suppresses NMDA receptor
               https://doi.org/10.1111/jpi.12456                  through opening of the mitochondrial permeability
            30.  Iuvone PM, Gan J, 1995, Functional interaction of melatonin   transition pore via melatonin receptor in mouse neurons.
               receptors  and  D1  dopamine  receptors  in  cultured  chick   Int J Mol Sci, 23: 3822.
               retinal neurons. J Neurosci, 15: 2179–2185.        https://doi.org/10.3390/ijms23073822
               https://doi.org/10.1523/JNEUROSCI.15-03-02179.1995  41.  Liu J, Chang L, Song Y, Li H, Wu Y. The role of NMDA
            31.  Shibata ACE, Ueda HH, Eto K, et al., 2021, Photoactivatable   receptors in alzheimer’s disease. Front Neurosci, 2019; 13:43.
               CaMKII induces synaptic plasticity in single synapses. Nat      https://doi.org/10.3389/fnins.2019.00043
               Commun, 12: 751.
                                                               42.  Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E,  et al.,
               https://doi.org/10.1038/s41467-021-21025-6         2020, MAP/ERK signaling in developing cognitive and
            32.  Xu J, Kawahata I, Izumi H, et al., 2021, T-type ca  enhancer   emotional function and its effect on pathological and
                                                  2+
               SAK3 activates CaMKII and proteasome activities in Lewy   neurodegenerative processes. Int J Mol Sci, 21: 4471.
               body dementia mice model. Int J Mol Sci, 22: 6185.     https://doi.org/10.3390/ijms21124471
               https://doi.org/10.3390/ijms22126185            43.  Liu SC, Tsai CH, Wang YH, et al., 2022, Melatonin abolished
            33.  Jarome TJ, Ferrara NC, Kwapis JL,  et  al., 2016, CaMKII   proinflammatory factor expression and  antagonized
               regulates proteasome phosphorylation and activity and   osteoarthritis progression in vivo. Cell Death Dis, 13: 215.
               promotes memory destabilization following retrieval.      https://doi.org/10.1038/s41419-022-04656-5
               Neurobiol Learn Mem, 128: 103–109.
                                                               44.  Shin EJ, Chung YH, Le HLT, et al., 2014, Melatonin attenuates
               https://doi.org/10.1016/j.nlm.2016.01.001          memory impairment induced by Klotho gene deficiency via
            34.  Benítez-King G, Ríos A, Martínez A, et al., 1996, In vitro   interactive signaling between MT2 receptor, ERK, and Nrf2-
               inhibition of ca2+/calmodulin-dependent kinase II activity   related antioxidant potential.  Int J Neuropsychopharmacol,
               by melatonin. Biochim Biophys Acta, 1290: 191–196.  18: pyu105.
               https://doi.org/10.1016/0304-4165(96)00025-6       https://doi.org/10.1093/ijnp/pyu105
            35.  León J, Escames G, Rodríguez MI, et al., 2006, Inhibition   45.  Iwashita H, Sano M, Kawaguchi M, et al., 2023, N-acetyl-5-
               of neuronal nitric oxide synthase activity by N1-acetyl-  methoxykynuramine enhance object location and working
               5-methoxykynuramine,  a  brain  metabolite  of  melatonin.   memory performances via modulating CaMKII, ERK and
               J Neurochem, 98: 2023–2033.                        CREB phosphorylation. Neuroreport, 34: 299–307.
               https://doi.org/10.1111/j.1471-4159.2006.04029.x     https://doi.org/10.1097/WNR.0000000000001893
            36.  Argueta J, Solís-Chagoyán H, Estrada-Reyes R, et al., 2022,   46.  Salminen A, 2022, Role of indoleamine 2,3-dioxygenase
               Further evidence of the melatonin calmodulin interaction:   1 (IDo1) and kynurenine pathway in the regulation of the
               Effect on CaMKII activity. Int J Mol Sci, 23: 2479.  aging process. Ageing Res Rev, 75: 101573.
               https://doi.org/10.3390/ijms23052479               https://doi.org/10.1016/j.arr.2022.101573
            37.  Jiang H, Ashraf GM, Liu M, et al., 2021, Tilianin ameliorates   47.  de Oliveira Silva S, Ximenes VF, Livramento JA, et al., 2005,
               cognitive dysfunction  and neuronal damage  in  rats   High concentrations of the melatonin metabolite, N1-acetyl-
               with vascular dementia via p-CaMKII/ERK/CREB and   N2-formyl-5-methoxykynuramine, in cerebrospinal fluid of
               ox-CaMKII-dependent  MAPK/NF-  κ  B  pathways.  Oxid   patients with meningitis: A  possible immunomodulatory
               Med Cell Longev, 2021: 6673967.                    mechanism. J Pineal Res, 39: 302–306.
                                                                  https://doi.org/10.1111/j.1600-079X.2005.00247.x
               https://doi.org/10.1155/2021/6673967
                                                               48.  Xie Z, Chen F, Li WA, et al., 2017, A review of sleep disorders
            38.  Chang CF, Huang HJ, Lee HC,  et al., 2012, Melatonin
               attenuates kainic acid-induced neurotoxicity in mouse   and melatonin. Neurol Res, 39: 559–565.
               hippocampus via inhibition of autophagy and α-synuclein      https://doi.org/10.1080/01616412.2017.1315864


            Volume 1 Issue 2 (2023)                         10                       https://doi.org/10.36922/jcbp.1174
   11   12   13   14   15   16   17   18   19   20   21