Page 32 - JCTR-11-5
P. 32
Journal of Clinical and
Translational Research AI and LLMs in iPSC cardiac research
parameters from calcium transients in human iPSC-derived doi: 10.1161/hcg.0000000000000097
cardiomyocytes to predict cardiac activity with machine 132. Pinero SL, Li X, Zhang J, et al. Omics-Based Computational
learning. Stem Cell Reports. 2022;17(3):556-568.
Approaches for Biomarker Identification, Prediction, and
doi: 10.1016/j.stemcr.2022.01.009 Treatment of Long COVID. MedRxIV; 2025.
122. Yang H, Obrezanova O, Pointon A, et al. Prediction of doi: 10.1101/2025.04.01.25324942
inotropic effect based on calcium transients in human iPSC- 133. Pramudito MA, Fuadah YN, Qauli AI, Marcellinus A,
derived cardiomyocytes and machine learning. Toxicol Appl Lim KM. Explainable artificial intelligence (XAI) to find
Pharmacol. 2022;459:116342.
optimal in-silico biomarkers for cardiac drug toxicity
doi: 10.1016/j.taap.2022.116342 evaluation. Sci Rep. 2024;14(1):24045.
123. Martin CH, Oved A, Chowdhury RA, et al. EP-PINNs: doi: 10.1038/s41598-024-71169-w
Cardiac Electrophysiology Characterisation using Physics- 134. Simon ST, Trinkley KE, Malone DC, Rosenberg MA.
Informed Neural Networks; 2021. Available from: https:// Interpretable machine learning prediction of drug-induced
arxiv.org/abs/2112.07703v1 [Last accessed on 2025 May 20].
QT prolongation: Electronic health record analysis. J Med
124. Árpádffy-Lovas T, Nagy N. ActionPytential: An open source Internet Res. 2022;24(12):e42163.
tool for analyzing and visualizing cardiac action potential doi: 10.2196/42163
data. Heliyon. 2023;9(3):e14440.
135. Research C for DEA. Cardiomyocytes for Mechanistic
doi: 10.1016/j.heliyon.2023.e14440
Cardiovascular Safety Liabilities. U.S. Food And Drug
125. Hoang P, Jacquir S, Lemus S, Ma Z. Quantification of Administration; 2019. Available from: https://www.fda.gov/
contractile dynamic complexities exhibited by human stem drugs/news-events-human-drugs/cardiomyocytes-mechanistic-
Cell-Derived cardiomyocytes using nonlinear dimensional cardiovascular-safety-liabilities [Last accessed on 2025 May 20].
analysis. Sci Rep. 2019;9(1):14714.
136. Tan WLW, Seow WQ, Zhang A, et al. Current and future
doi: 10.1038/s41598-019-51197-7 perspectives of single-cell multi-omics technologies in
cardiovascular research. Nat Cardiovasc Res. 2023;2(1):
126. Naghavi E, Wang H, Fan L, et al. Rapid estimation of left
ventricular contractility with a physics-informed neural 20-34.
network inverse modeling approach. Artif Intell Med. doi: 10.1038/s44161-022-00205-7
2024;157:102995.
137. Yang C, Jin Y, Yin Y. Integration of single-cell transcriptome
doi: 10.1016/j.artmed.2024.102995 and chromatin accessibility and its application on tumor
investigation. Life Med. 2024;3(2):lnae015.
127. Lieber A, Kiem HP. Prospects and challenges of
in vivo hematopoietic stem cell genome editing for doi: 10.1093/lifemedi/lnae015
hemoglobinopathies. Mol Ther. 2023;31(10):2823-2825.
138. Pierce SE, Granja JM, Greenleaf WJ. High-throughput
doi: 10.1016/j.ymthe.2023.09.006 single-cell chromatin accessibility CRISPR screens enable
unbiased identification of regulatory networks in cancer.
128. Shim JV, Xiong Y, Dhanan P, et al. Predicting individual-
specific cardiotoxicity responses induced by tyrosine kinase Nat Commun. 2021;12(1):2969.
inhibitors. Front Pharmacol. 2023;14:1158222. doi: 10.1038/s41467-021-23213-w
doi: 10.3389/fphar.2023.1158222 139. Song M, Wen J, Kuang Y, Xie M. EPI-RMDL: Prediction
of enhancer-promoter interactions based on ROFormer
129. Sang L, Zhou Z, Luo S, et al. An in silico platform to predict
cardiotoxicity risk of anti-tumor drug combination with hiPSC- mechanism and deep learning. In: 2021 IEEE International
CMs based in vitro study. Pharm Res. 2023;41(2):247-262. Conference on Bioinformatics and Biomedicine (BIBM);
2024. p. 357-362.
doi: 10.1007/s11095-023-03644-4
doi: 10.1109/bibm62325.2024.10821931
130. Nam Y, Kim J, Jung SH, et al. Harnessing Artificial
intelligence in multimodal Omics Data Integration: Paving 140. Zhang T, Zhao X, Sun H, Gao B, Liu X. GATv2EPI:
the path for the next frontier in precision medicine. Annu Predicting enhancer-promoter interactions with a dynamic
Rev Biomed Data Sci. 2024;7(1):225-250. graph attention network. Genes. 2024;15(12):1511.
doi: 10.3390/genes15121511
doi: 10.1146/annurev-biodatasci-102523-103801
141. Klattenhoff CA, Scheuermann JC, Surface LE, et al. Braveheart,
131. Khera R, Asnani AH, Krive J, et al. Artificial intelligence to
enhance precision medicine in cardio-oncology: A scientific a long noncoding RNA required for cardiovascular lineage
statement from the American Heart Association. Circ commitment. Cell. 2013;152(3):570-583.
Genom Precis Med. 2025;18:e000097. doi: 10.1016/j.cell.2013.01.003
Volume 11 Issue 5 (2025) 26 doi: 10.36922/JCTR025230026

