Page 32 - JCTR-11-5
P. 32

Journal of Clinical and
            Translational Research                                                AI and LLMs in iPSC cardiac research



               parameters from calcium transients in human iPSC-derived      doi: 10.1161/hcg.0000000000000097
               cardiomyocytes to predict cardiac activity with machine   132. Pinero SL, Li X, Zhang J, et al. Omics-Based Computational
               learning. Stem Cell Reports. 2022;17(3):556-568.
                                                                  Approaches for Biomarker Identification, Prediction, and
               doi: 10.1016/j.stemcr.2022.01.009                  Treatment of Long COVID. MedRxIV; 2025.
            122. Yang  H, Obrezanova O,  Pointon  A,  et al.  Prediction  of      doi: 10.1101/2025.04.01.25324942
               inotropic effect based on calcium transients in human iPSC-  133. Pramudito  MA,  Fuadah  YN,  Qauli  AI,  Marcellinus  A,
               derived cardiomyocytes and machine learning. Toxicol Appl   Lim  KM. Explainable artificial intelligence (XAI) to find
               Pharmacol. 2022;459:116342.
                                                                  optimal in-silico biomarkers for cardiac drug toxicity
               doi: 10.1016/j.taap.2022.116342                    evaluation. Sci Rep. 2024;14(1):24045.
            123. Martin CH, Oved A, Chowdhury RA, et al. EP-PINNs:      doi: 10.1038/s41598-024-71169-w
               Cardiac Electrophysiology Characterisation using Physics-  134. Simon ST, Trinkley KE, Malone DC, Rosenberg MA.
               Informed Neural Networks; 2021. Available from: https://  Interpretable machine learning prediction of drug-induced
               arxiv.org/abs/2112.07703v1 [Last accessed on 2025 May 20].
                                                                  QT prolongation: Electronic health record analysis. J Med
            124. Árpádffy-Lovas T, Nagy N. ActionPytential: An open source   Internet Res. 2022;24(12):e42163.
               tool for analyzing and visualizing cardiac action potential      doi: 10.2196/42163
               data. Heliyon. 2023;9(3):e14440.
                                                               135.  Research C for DEA.  Cardiomyocytes for Mechanistic
               doi: 10.1016/j.heliyon.2023.e14440
                                                                  Cardiovascular Safety Liabilities. U.S. Food And Drug
            125. Hoang P, Jacquir S, Lemus S, Ma Z. Quantification of   Administration; 2019. Available from: https://www.fda.gov/
               contractile dynamic complexities exhibited by human stem   drugs/news-events-human-drugs/cardiomyocytes-mechanistic-
               Cell-Derived cardiomyocytes using nonlinear dimensional   cardiovascular-safety-liabilities [Last accessed on 2025 May 20].
               analysis. Sci Rep. 2019;9(1):14714.
                                                               136. Tan WLW, Seow WQ, Zhang A, et al. Current and future
               doi: 10.1038/s41598-019-51197-7                    perspectives of single-cell multi-omics technologies in
                                                                  cardiovascular research.  Nat  Cardiovasc  Res. 2023;2(1):
            126. Naghavi E, Wang H, Fan L, et al. Rapid estimation of left
               ventricular contractility with a physics-informed neural   20-34.
               network inverse modeling approach.  Artif Intell Med.      doi: 10.1038/s44161-022-00205-7
               2024;157:102995.
                                                               137. Yang C, Jin Y, Yin Y. Integration of single-cell transcriptome
               doi: 10.1016/j.artmed.2024.102995                  and chromatin accessibility and its application on tumor
                                                                  investigation. Life Med. 2024;3(2):lnae015.
            127. Lieber A, Kiem HP. Prospects and challenges of
               in  vivo hematopoietic stem cell genome editing for      doi: 10.1093/lifemedi/lnae015
               hemoglobinopathies. Mol Ther. 2023;31(10):2823-2825.
                                                               138. Pierce SE, Granja JM, Greenleaf WJ. High-throughput
               doi: 10.1016/j.ymthe.2023.09.006                   single-cell  chromatin  accessibility  CRISPR  screens  enable
                                                                  unbiased identification of  regulatory networks  in cancer.
            128. Shim JV, Xiong Y, Dhanan P, et al. Predicting individual-
               specific cardiotoxicity responses induced by tyrosine kinase   Nat Commun. 2021;12(1):2969.
               inhibitors. Front Pharmacol. 2023;14:1158222.      doi: 10.1038/s41467-021-23213-w
               doi: 10.3389/fphar.2023.1158222                 139. Song M, Wen J, Kuang Y, Xie M. EPI-RMDL: Prediction
                                                                  of enhancer-promoter interactions based on ROFormer
            129.  Sang L, Zhou Z, Luo S, et al. An in silico platform to predict
               cardiotoxicity risk of anti-tumor drug combination with hiPSC-  mechanism and deep learning. In: 2021 IEEE International
               CMs based in vitro study. Pharm Res. 2023;41(2):247-262.  Conference on Bioinformatics and Biomedicine (BIBM);
                                                                  2024. p. 357-362.
               doi: 10.1007/s11095-023-03644-4
                                                                  doi: 10.1109/bibm62325.2024.10821931
            130. Nam Y, Kim J, Jung SH,  et al. Harnessing Artificial
               intelligence in multimodal Omics Data Integration: Paving   140. Zhang T, Zhao X, Sun H, Gao B, Liu X. GATv2EPI:
               the path for the next frontier in precision medicine. Annu   Predicting enhancer-promoter interactions with a dynamic
               Rev Biomed Data Sci. 2024;7(1):225-250.            graph attention network. Genes. 2024;15(12):1511.
                                                                  doi: 10.3390/genes15121511
               doi: 10.1146/annurev-biodatasci-102523-103801
                                                               141. Klattenhoff CA, Scheuermann JC, Surface LE, et al. Braveheart,
            131. Khera R, Asnani AH, Krive J, et al. Artificial intelligence to
               enhance precision medicine in cardio-oncology: A scientific   a long noncoding RNA required for cardiovascular lineage
               statement from the American Heart Association.  Circ   commitment. Cell. 2013;152(3):570-583.
               Genom Precis Med. 2025;18:e000097.                 doi: 10.1016/j.cell.2013.01.003


            Volume 11 Issue 5 (2025)                        26                         doi: 10.36922/JCTR025230026
   27   28   29   30   31   32   33   34   35   36   37