Page 31 - JCTR-11-5
P. 31
Journal of Clinical and
Translational Research AI and LLMs in iPSC cardiac research
2021;10:e68714. doi: 10.3389/fcvm.2022.924461
doi: 10.7554/elife.68714 111. Pelletier AR, Ramirez J, Adam I, et al. Explainable Biomedical
Hypothesis Generation via Retrieval Augmented Generation
101. Li L, Zhou J, Gao Z, et al. A Scoping Review of Using Large
Language Models (LLMs) to Investigate Electronic Health enabled Large Language Models; 2024. Available from:
Records (EHRs); 2024. Available from: https://arxiv.org/ https://arxiv.org/abs/2407.12888v1 [Last accessed on 2025
abs/2405.03066v2 [Last accessed on 2025 May 20]. May 20].
112. Raza MZ, Xu J, Lim T, et al. LLM-TA: An LLM-Enhanced
102. Tsai M, Chen K, Chen P. Harnessing electronic health records
and artificial intelligence for enhanced cardiovascular Risk Thematic Analysis Pipeline for Transcripts from Parents of
Prediction: A Comprehensive review. J Am Heart Assoc. Children with Congenital Heart Disease; 2025. Available
2025;14:e036946. from: https://arxiv.org/abs/2502.01620v1 [Last accessed on
2025 May 20].
doi: 10.1161/jaha.124.036946
113. Kong F, Stocker S, Choi PS, Ma M, Ennis DB, Marsden A.
103. Kucharska-Newton AM, Loop MS, Bullo M, et al. Use of SDF4CHD: Generative Modeling of Cardiac Anatomies with
troponins in the classification of myocardial infarction Congenital Heart Defects; 2023. Available from: https://arxiv.
from electronic health records. The Atherosclerosis Risk in org/abs/2311.00332v2 [Last accessed on 2025 May 20].
Communities (ARIC) Study. Int J Cardiol. 2021;348:152-156.
114. Simon ST, Mandair D, Tiwari P, Rosenberg MA. Prediction
doi: 10.1016/j.ijcard.2021.12.022 of drug-induced long QT Syndrome using machine learning
104. Johnson AEW, Bulgarelli L, Shen L, et al. MIMIC-IV, a applied to harmonized electronic health record data.
freely accessible electronic health record dataset. Sci Data. J Cardiovasc Pharmacol Ther. 2021;26(4):335-340.
2023;10(1):1. doi: 10.1177/1074248421995348
doi: 10.1038/s41597-022-01899-x 115. Zhang H, Tarabanis C, Jethani N, et al. QTNet: Predicting
drug-induced QT prolongation with artificial intelligence-
105. Nagamine T, Gillette B, Kahoun J, Burghaus R, Lippert J,
Saxena M. Data-driven identification of heart failure disease enabled electrocardiograms. JACC Clin Electrophysiol.
states and progression pathways using electronic health 2024;10(5):956-966.
records. Sci Rep. 2022;12(1):7871. doi: 10.1016/j.jacep.2024.01.022
doi: 10.1038/s41598-022-22398-4 116. Zaka A, Mutahar D, Gorcilov J, et al. Machine-learning
approaches for risk prediction after percutaneous coronary
106. Singhal P, Tan ALM, Drivas TG, Johnson KB, Ritchie MD,
Beaulieu-Jones BK. Opportunities and challenges for intervention: A systematic review and meta-analysis. Eur
biomarker discovery using electronic health record data. Heart J Digit Health. 2024;6(1):23-44.
Trends Mol Med. 2023;29(9):765-776. doi: 10.1093/ehjdh/ztae074
doi: 10.1016/j.molmed.2023.06.006 117. Tremamunno G, Vecsey-Nagy M, Schoepf UJ, et al.
Artificial intelligence improves prediction of major adverse
107. Bhasuran B, Manoharan S, Iyyappan OR, Murugesan G,
Prabahar A, Raja K. Large language models and genomics cardiovascular events in patients undergoing transcatheter
for summarizing the role of microRNA in regulating mRNA aortic valve replacement planning CT. Acad Radiol.
expression. Biomedicines. 2024;12(7):1535. 2024;32(2):702-711.
doi: 10.1016/j.acra.2024.09.046
doi: 10.3390/biomedicines12071535
118. Chung P, Fong CT, Walters AM, Aghaeepour N, Yetisgen M,
108. Du X, Wang Y, Zhou Z, et al. Generative Large Language
Models in Electronic Health Records for Patient Care Since O’Reilly-Shah VN. Large language model capabilities in
2023: A Systematic Review. medRxiv. New York: (Cold perioperative risk prediction and prognostication. JAMA
Spring Harbor Laboratory); 2024. Surg. 2024;159(8):928.
doi: 10.1001/jamasurg.2024.1621
doi: 10.1101/2024.08.11.24311828
119. Kazaki N, Hattori K, Shota H, et al. Building a Large Japanese
109. Wells QS, Gupta DK, Smith JG, et al. Accelerating
biomarker discovery through electronic health records, Web Corpus for Large Language Models. Available from:
automated biobanking, and proteomics. J Am Coll Cardiol. https://arxiv.org/html/2404.17733v1 [Last accessed on 2025
2019;73(17):2195-2205. May 20].
120. Singhal K, Azizi S, Tu T, et al. Large language models encode
doi: 10.1016/j.jacc.2019.01.074
clinical knowledge. Nature. 2023;620(7972):172-180.
110. Zhang J, Chen Z, Ma M, He Y. Soluble ST2 in coronary
artery disease: Clinical biomarkers and treatment guidance. doi: 10.1038/s41586-023-06291-2
Front Cardiovasc Med. 2022;9:924461. 121. Yang H, Stebbeds W, Francis J, et al. Deriving waveform
Volume 11 Issue 5 (2025) 25 doi: 10.36922/JCTR025230026

