Page 31 - JCTR-11-5
P. 31

Journal of Clinical and
            Translational Research                                                AI and LLMs in iPSC cardiac research



               2021;10:e68714.                                    doi: 10.3389/fcvm.2022.924461
               doi: 10.7554/elife.68714                        111. Pelletier AR, Ramirez J, Adam I, et al. Explainable Biomedical
                                                                  Hypothesis Generation via Retrieval Augmented Generation
            101. Li L, Zhou J, Gao Z, et al. A Scoping Review of Using Large
               Language Models (LLMs) to Investigate Electronic Health   enabled Large Language Models; 2024. Available from:
               Records (EHRs); 2024. Available from: https://arxiv.org/  https://arxiv.org/abs/2407.12888v1 [Last accessed on 2025
               abs/2405.03066v2 [Last accessed on 2025 May 20].   May 20].
                                                               112. Raza MZ, Xu J, Lim T, et al. LLM-TA: An LLM-Enhanced
            102. Tsai M, Chen K, Chen P. Harnessing electronic health records
               and artificial intelligence for enhanced cardiovascular Risk   Thematic  Analysis  Pipeline  for  Transcripts  from  Parents  of
               Prediction: A  Comprehensive review.  J  Am Heart Assoc.   Children with Congenital Heart Disease; 2025. Available
               2025;14:e036946.                                   from: https://arxiv.org/abs/2502.01620v1 [Last accessed on
                                                                  2025 May 20].
               doi: 10.1161/jaha.124.036946
                                                               113. Kong F, Stocker S, Choi PS, Ma M, Ennis DB, Marsden A.
            103. Kucharska-Newton AM, Loop MS, Bullo M,  et al. Use of   SDF4CHD: Generative Modeling of Cardiac Anatomies with
               troponins in the classification of myocardial infarction   Congenital Heart Defects; 2023. Available from: https://arxiv.
               from electronic health records. The Atherosclerosis Risk in   org/abs/2311.00332v2 [Last accessed on 2025 May 20].
               Communities (ARIC) Study. Int J Cardiol. 2021;348:152-156.
                                                               114. Simon ST, Mandair D, Tiwari P, Rosenberg MA. Prediction
               doi: 10.1016/j.ijcard.2021.12.022                  of drug-induced long QT Syndrome using machine learning
            104. Johnson AEW, Bulgarelli L, Shen L,  et al. MIMIC-IV, a   applied to harmonized electronic health record data.
               freely accessible electronic health record dataset. Sci Data.   J Cardiovasc Pharmacol Ther. 2021;26(4):335-340.
               2023;10(1):1.                                      doi: 10.1177/1074248421995348
               doi: 10.1038/s41597-022-01899-x                 115. Zhang H, Tarabanis C, Jethani N, et al. QTNet: Predicting
                                                                  drug-induced QT prolongation with artificial intelligence-
            105. Nagamine T, Gillette B, Kahoun J, Burghaus R, Lippert J,
               Saxena M. Data-driven identification of heart failure disease   enabled electrocardiograms.  JACC Clin Electrophysiol.
               states  and progression  pathways using electronic  health   2024;10(5):956-966.
               records. Sci Rep. 2022;12(1):7871.                 doi: 10.1016/j.jacep.2024.01.022
               doi: 10.1038/s41598-022-22398-4                 116. Zaka A, Mutahar D, Gorcilov J,  et al. Machine-learning
                                                                  approaches for risk prediction after percutaneous coronary
            106. Singhal P, Tan ALM, Drivas TG, Johnson KB, Ritchie MD,
               Beaulieu-Jones BK. Opportunities and challenges for   intervention: A  systematic review and meta-analysis.  Eur
               biomarker discovery using electronic health record data.   Heart J Digit Health. 2024;6(1):23-44.
               Trends Mol Med. 2023;29(9):765-776.                doi: 10.1093/ehjdh/ztae074
               doi: 10.1016/j.molmed.2023.06.006               117. Tremamunno  G, Vecsey-Nagy M, Schoepf UJ,  et al.
                                                                  Artificial intelligence improves prediction of major adverse
            107. Bhasuran B, Manoharan S, Iyyappan OR, Murugesan G,
               Prabahar A, Raja K. Large language models and genomics   cardiovascular events in patients undergoing transcatheter
               for summarizing the role of microRNA in regulating mRNA   aortic valve replacement planning CT.  Acad Radiol.
               expression. Biomedicines. 2024;12(7):1535.         2024;32(2):702-711.
                                                                  doi: 10.1016/j.acra.2024.09.046
               doi: 10.3390/biomedicines12071535
                                                               118. Chung P, Fong CT, Walters AM, Aghaeepour N, Yetisgen M,
            108. Du X, Wang Y, Zhou Z, et al. Generative Large Language
               Models in Electronic Health Records for Patient Care Since   O’Reilly-Shah VN. Large language model capabilities in
               2023:  A  Systematic  Review.  medRxiv.  New  York:  (Cold   perioperative risk prediction and prognostication.  JAMA
               Spring Harbor Laboratory); 2024.                   Surg. 2024;159(8):928.
                                                                  doi: 10.1001/jamasurg.2024.1621
               doi: 10.1101/2024.08.11.24311828
                                                               119. Kazaki N, Hattori K, Shota H, et al. Building a Large Japanese
            109. Wells QS, Gupta DK, Smith JG,  et al. Accelerating
               biomarker discovery through electronic health records,   Web Corpus for Large Language Models.  Available  from:
               automated biobanking, and proteomics. J Am Coll Cardiol.   https://arxiv.org/html/2404.17733v1 [Last accessed on 2025
               2019;73(17):2195-2205.                             May 20].
                                                               120. Singhal K, Azizi S, Tu T, et al. Large language models encode
               doi: 10.1016/j.jacc.2019.01.074
                                                                  clinical knowledge. Nature. 2023;620(7972):172-180.
            110. Zhang J, Chen Z, Ma M, He Y. Soluble ST2 in coronary
               artery disease: Clinical biomarkers and treatment guidance.      doi: 10.1038/s41586-023-06291-2
               Front Cardiovasc Med. 2022;9:924461.            121. Yang H, Stebbeds W, Francis J,  et al. Deriving waveform


            Volume 11 Issue 5 (2025)                        25                         doi: 10.36922/JCTR025230026
   26   27   28   29   30   31   32   33   34   35   36