Page 29 - JCTR-11-5
P. 29

Journal of Clinical and
            Translational Research                                                AI and LLMs in iPSC cardiac research



               Networks. New York: arXiv Cornell University; 2024.     doi: 10.1093/bfgp/elae029
               doi: 10.1109/isbi56570.2024.10635234            67.  Nijkamp E, Ruffolo JA, Weinstein EN, Naik N, Madani A.
                                                                  ProGen2: Exploring the boundaries of protein language
            55.  Ouyang JF, Chothani S,  Rackham OJL. Deep learning
               models will shape the future of stem cell research. Stem Cell   models. Cell Syst. 2023;14(11):968-978.e3.
               Reports. 2023;18(1):6-12.                          doi: 10.1016/j.cels.2023.10.002
               doi: 10.1016/j.stemcr.2022.11.007               68.  Kulkarni P, Porter L, Chou TF, et al. Evolving concepts of the
                                                                  protein universe. iScience. 2025;28(3):112012.
            56.  Sen S, Hoff S, Bonomi M. BPS2025-Improving small-
               molecule docking using AlphaFold models with bAIes.      doi: 10.1016/j.isci.2025.112012
               Biophys J. 2025;124(3):224a.
                                                               69.  Clough E, Barrett T, Wilhite SE, et al. NCBI GEO: Archive
            57.  Wysocki  O,  Zhou  Z,  O’Regan  P,  et al.  Transformers and   for gene expression and epigenomics data sets: 23-year
               the Representation of Biomedical Background Knowledge.   update. Nucleic Acids Res. 2023;52(D1):D138-D144.
               New York: arXiv Cornell University; 2022.
                                                                  doi: 10.1093/nar/gkad965
               doi: 10.48550/arxiv.2202.02432
                                                               70.  Stanescu L, Dinu G. TensorFlow vs. PyTorch in
            58.  Lee  J,  Yoon W,  Kim  S,  et al.  BioBERT:  A  pre-trained   classifying medical images – preliminary results. In:
               biomedical language representation model for biomedical   2022 26  International Conference on System Theory, Control
                                                                        th
               text mining. Bioinformatics. 2019;36(4):1234-1240.  and Computing (ICSTCC); 2023. p. 448-453.
               doi: 10.1093/bioinformatics/btz682                 doi: 10.1109/icstcc59206.2023.10308472
            59.  Luo R, Sun L, Xia Y, et al. BioGPT: Generative pre-trained   71.  Novac  OC,  Chirodea  MC,  Novac  CM,  et al.  Analysis  of
               transformer for biomedical text generation and mining.   the application efficiency of TensorFlow and PyTorch
               Brief Bioinform. 2022;23(6):bbac409.               in  convolutional  neural  network.  Sensors (Basel).
                                                                  2022;22(22):8872.
               doi: 10.1093/bib/bbac409
                                                                  doi: 10.3390/s22228872
            60.  Bolton E, Venigalla A, Yasunaga M, et al. BioMedLM: A 2.7B
               Parameter  Language  Model  Trained  on  Biomedical  Text;   72.  Sugiura T, Shahannaz DC, Ferrell BE. Current status of
               2024. Available from: https://arxiv.org/abs/2403.18421v1   cardiac regenerative therapy using induced pluripotent stem
               [Last accessed on 2025 May 20].                    cells. Int J Mol Sci. 2024;25(11):5772.
            61.  Cronin L.  Chemputer and Chemputation  -  a Universal      doi: 10.3390/ijms25115772
               Chemical Compound Synthesis Machine; 2024. Available   73.  Sugiura T, Nawaz S, Shahannaz DC, Ferrell BE, Yoshida T.
               from: https://arxiv.org/abs/2408.09171v2 [Last accessed on   From injury to repair: The therapeutic potential of
               2025 May 20].
                                                                  induced pluripotent stem cells in heart failure. Regen Med
            62.  Peng C, Yang X, Chen A, et al. A study of generative large   Rep. 2025;2(1):22-30.
               language model for medical research and healthcare.  NPJ      doi: 10.4103/regenmed.regenmed-d-25-00002
               Digit Med. 2023;6(1):210.
                                                               74.  Shahannaz DC, Sugiura T, Ferrell BE. Enhancing
               doi: 10.1038/s41746-023-00958-w
                                                                  mitochondrial maturation in IPSC-DerivedCardiomyocytes:
            63.  Chen JH, Tseng YJ. A  general optimization protocol for   Strategies  for  metabolic  optimization.  BioChem.
               molecular property  prediction  using a  deep  learning   2025;5(3):23.
               network. Brief Bioinform. 2021;23(1):bbab367.
                                                                  doi: 10.3390/biochem5030023
            64.  Nosrati H, Nosrati M. Artificial intelligence in regenerative   75.  Shi Y, Yang J, Nai C, et al. Language-Enhanced representation
               medicine: Applications and implications.  Biomimetics   learning for Single-Cell transcriptomics; 2025. Available from:
               (Basel). 2023;8(5):442.
                                                                  https://arxiv.org/abs/2503.09427  [Last  accessed  on  2025
               doi: 10.3390/biomimetics8050442                    May 20].
            65.  Herson J, Krummenacker M, Spaulding A, O’Maille  P,   76.  Wang Y, Chen X, Zheng Z, et al. scGREAT: Transformer-
               Karp PD. The genome explorer genome browser. mSystems.   based deep-language model for gene regulatory network
               2024;9(7):e0026724.                                inference  from single-cell transcriptomics.  iScience.
                                                                  2024;27(4):109352.
               doi: 10.1128/msystems.00267-24
                                                                  doi: 10.1016/j.isci.2024.109352
            66.  Forero DA, Bonilla DA, González-Giraldo Y, Patrinos GP.
               An overview of key online resources for human genomics:   77.  Mao Y, Mi Y, Liu  P, Zhang M,  Liu H, Gao Y.  SCAgent:
               A  powerful and open toolbox for  in silico research.  Brief   Universal  Single-Cell  Annotation  via  a  LLM  agent; 2025.
               Funct Genomics. 2024;23(6):754-764.                Available from: https://arxiv.org/abs/2504.04698 [Last


            Volume 11 Issue 5 (2025)                        23                         doi: 10.36922/JCTR025230026
   24   25   26   27   28   29   30   31   32   33   34