Page 29 - JCTR-11-5
P. 29
Journal of Clinical and
Translational Research AI and LLMs in iPSC cardiac research
Networks. New York: arXiv Cornell University; 2024. doi: 10.1093/bfgp/elae029
doi: 10.1109/isbi56570.2024.10635234 67. Nijkamp E, Ruffolo JA, Weinstein EN, Naik N, Madani A.
ProGen2: Exploring the boundaries of protein language
55. Ouyang JF, Chothani S, Rackham OJL. Deep learning
models will shape the future of stem cell research. Stem Cell models. Cell Syst. 2023;14(11):968-978.e3.
Reports. 2023;18(1):6-12. doi: 10.1016/j.cels.2023.10.002
doi: 10.1016/j.stemcr.2022.11.007 68. Kulkarni P, Porter L, Chou TF, et al. Evolving concepts of the
protein universe. iScience. 2025;28(3):112012.
56. Sen S, Hoff S, Bonomi M. BPS2025-Improving small-
molecule docking using AlphaFold models with bAIes. doi: 10.1016/j.isci.2025.112012
Biophys J. 2025;124(3):224a.
69. Clough E, Barrett T, Wilhite SE, et al. NCBI GEO: Archive
57. Wysocki O, Zhou Z, O’Regan P, et al. Transformers and for gene expression and epigenomics data sets: 23-year
the Representation of Biomedical Background Knowledge. update. Nucleic Acids Res. 2023;52(D1):D138-D144.
New York: arXiv Cornell University; 2022.
doi: 10.1093/nar/gkad965
doi: 10.48550/arxiv.2202.02432
70. Stanescu L, Dinu G. TensorFlow vs. PyTorch in
58. Lee J, Yoon W, Kim S, et al. BioBERT: A pre-trained classifying medical images – preliminary results. In:
biomedical language representation model for biomedical 2022 26 International Conference on System Theory, Control
th
text mining. Bioinformatics. 2019;36(4):1234-1240. and Computing (ICSTCC); 2023. p. 448-453.
doi: 10.1093/bioinformatics/btz682 doi: 10.1109/icstcc59206.2023.10308472
59. Luo R, Sun L, Xia Y, et al. BioGPT: Generative pre-trained 71. Novac OC, Chirodea MC, Novac CM, et al. Analysis of
transformer for biomedical text generation and mining. the application efficiency of TensorFlow and PyTorch
Brief Bioinform. 2022;23(6):bbac409. in convolutional neural network. Sensors (Basel).
2022;22(22):8872.
doi: 10.1093/bib/bbac409
doi: 10.3390/s22228872
60. Bolton E, Venigalla A, Yasunaga M, et al. BioMedLM: A 2.7B
Parameter Language Model Trained on Biomedical Text; 72. Sugiura T, Shahannaz DC, Ferrell BE. Current status of
2024. Available from: https://arxiv.org/abs/2403.18421v1 cardiac regenerative therapy using induced pluripotent stem
[Last accessed on 2025 May 20]. cells. Int J Mol Sci. 2024;25(11):5772.
61. Cronin L. Chemputer and Chemputation - a Universal doi: 10.3390/ijms25115772
Chemical Compound Synthesis Machine; 2024. Available 73. Sugiura T, Nawaz S, Shahannaz DC, Ferrell BE, Yoshida T.
from: https://arxiv.org/abs/2408.09171v2 [Last accessed on From injury to repair: The therapeutic potential of
2025 May 20].
induced pluripotent stem cells in heart failure. Regen Med
62. Peng C, Yang X, Chen A, et al. A study of generative large Rep. 2025;2(1):22-30.
language model for medical research and healthcare. NPJ doi: 10.4103/regenmed.regenmed-d-25-00002
Digit Med. 2023;6(1):210.
74. Shahannaz DC, Sugiura T, Ferrell BE. Enhancing
doi: 10.1038/s41746-023-00958-w
mitochondrial maturation in IPSC-DerivedCardiomyocytes:
63. Chen JH, Tseng YJ. A general optimization protocol for Strategies for metabolic optimization. BioChem.
molecular property prediction using a deep learning 2025;5(3):23.
network. Brief Bioinform. 2021;23(1):bbab367.
doi: 10.3390/biochem5030023
64. Nosrati H, Nosrati M. Artificial intelligence in regenerative 75. Shi Y, Yang J, Nai C, et al. Language-Enhanced representation
medicine: Applications and implications. Biomimetics learning for Single-Cell transcriptomics; 2025. Available from:
(Basel). 2023;8(5):442.
https://arxiv.org/abs/2503.09427 [Last accessed on 2025
doi: 10.3390/biomimetics8050442 May 20].
65. Herson J, Krummenacker M, Spaulding A, O’Maille P, 76. Wang Y, Chen X, Zheng Z, et al. scGREAT: Transformer-
Karp PD. The genome explorer genome browser. mSystems. based deep-language model for gene regulatory network
2024;9(7):e0026724. inference from single-cell transcriptomics. iScience.
2024;27(4):109352.
doi: 10.1128/msystems.00267-24
doi: 10.1016/j.isci.2024.109352
66. Forero DA, Bonilla DA, González-Giraldo Y, Patrinos GP.
An overview of key online resources for human genomics: 77. Mao Y, Mi Y, Liu P, Zhang M, Liu H, Gao Y. SCAgent:
A powerful and open toolbox for in silico research. Brief Universal Single-Cell Annotation via a LLM agent; 2025.
Funct Genomics. 2024;23(6):754-764. Available from: https://arxiv.org/abs/2504.04698 [Last
Volume 11 Issue 5 (2025) 23 doi: 10.36922/JCTR025230026

