Page 30 - JCTR-11-5
P. 30
Journal of Clinical and
Translational Research AI and LLMs in iPSC cardiac research
accessed on 2025 May 20]. Pediatr Congen Heart Surg. 2025;16:571-577.
78. Collins RL, Glessner JT, Porcu E, et al. A cross-disorder doi: 10.1177/21501351251335643
dosage sensitivity map of the human genome. Cell. 90. Holt DB, El-Bokl A, Stromberg D, Taylor MD. Role of artificial
2022;185(16):3041-3055.e25.
intelligence in congenital heart disease and interventions.
doi: 10.1016/j.cell.2022.06.036 J Soc Cardiovasc Angiogr Interv. 2025;4(3):102567.
79. Zhu Y, Ren C, Xie S, et al. REALM: RAG-Driven Enhancement doi: 10.1016/j.jscai.2025.102567
of Multimodal Electronic Health Records Analysis via Large 91. Micheu MM, Rosca AM. Patient-specific induced
Language Models; 2024. Available from: https://arxiv.org/ pluripotent stem cells as “disease-in-a-dish” models for
abs/2402.07016v1 [Last accessed on 2025 May 20].
inherited cardiomyopathies and channelopathies – 15 years
80. Krishna R, Wang J, Ahern W, et al. Generalized biomolecular of research. World J Stem Cells. 2021;13(4):281-303.
modeling and design with RoseTTAFold All-Atom. Science. doi: 10.4252/wjsc.v13.i4.281
2024;384(6693):eadl2528.
92. Funakoshi S, Yoshida Y. Recent progress of iPSC technology
doi: 10.1126/science.adl2528
in cardiac diseases. Arch Toxicol. 2021;95(12):3633-3650.
81. Bunne C, Roohani Y, Rosen Y, et al. How to build the virtual doi: 10.1007/s00204-021-03172-3
cell with artificial intelligence: Priorities and opportunities.
Cell. 2024;187(25):7045-7063. 93. Hong L, Zhang M, Ly OT, et al. Human induced pluripotent
stem cell-derived atrial cardiomyocytes carrying an SCN5A
doi: 10.1016/j.cell.2024.11.015
mutation identify nitric oxide signaling as a mediator of
82. Keshri R, Detraux D, Phal A, et al. Next-generation direct atrial fibrillation. Stem Cell Reports. 2021;16(6):1542-1554.
reprogramming. Front Cell Dev Biol. 2024;12:1343106.
doi: 10.1016/j.stemcr.2021.04.019
doi: 10.3389/fcell.2024.1343106
94. Guven O, DeMirci H. Structural Analysis and Docking
83. Lam WY, Au SCL. From ChatGPT to DeepSeek: Potential Studies of FK506-Binding Protein 1A. bioRxiv. New York:
uses of artificial intelligence in early symptom recognition Cold Spring Harbor Laboratory; 2025.
for stroke care. J Acute Dis. 2025;14(1):6.
doi: 10.1101/2025.05.22.655516
doi: 10.4103/jad.jad_16_25
95. RIKEN-Max Planck Joint Research Center for Systems
84. Lavrov AV, Varenikov GG, Skoblov MY. Genome scale Chemical Biology. RIKEN. Available from: https://www.
analysis of pathogenic variants targetable for single base riken.jp/en/collab/research/riken_mpg/ [Last accessed on
editing. BMC Med Genom. 2020;13(Suppl 8):80. 2025 May 20].
doi: 10.1186/s12920-020-00735-8 96. Xu X, Kaindl J, Clark MJ, et al. Binding pathway determines
85. Keio University. AI Model Developed by Brigham Researchers norepinephrine selectivity for the human β1AR over β2AR.
Could Help Screen for Heart Defect. Keio University; 2023. Cell Res. 2020;31(5):569-579.
Available from: https://www.keio.ac.jp/en/press-releases/ doi: 10.1038/s41422-020-00424-2
27
files/2023/11/7/231107-1.pdf [Last accessed on 2025 May .
97. Numata G, Otsu Y, Nakamura S, et al. In vivo effects of
86. Miura K, Yagi R, Miyama H, et al. Deep learning-based Cardiomyocyte-Specific Beta-1 blockade on afterload- and
model detects atrial septal defects from electrocardiography: frequency-dependent cardiac performance. Am J Physiol
A cross-sectional multicenter hospital-based study. Heart Circ Physiol. 2025;328:H543-H549.
EClinicalMedicine. 2023;63:102141.
doi: 10.1152/ajpheart.00795.2024
doi: 10.1016/j.eclinm.2023.102141
98. Cantwell CD, Mohamied Y, Tzortzis KN, et al. Rethinking
87. Batteux C, Haidar MA, Bonnet D. 3D-printed models for multiscale cardiac electrophysiology with machine learning
surgical planning in complex congenital heart diseases: and predictive modelling. Comput Biol Med. 2018;104:339-351.
A systematic review. Front Pediatr. 2019;7:23.
doi: 10.1016/j.compbiomed.2018.10.015
doi: 10.3389/fped.2019.00023
99. Fatkin D, Calkins H, Elliott P, James CA, Peters S,
88. Sørensen TS, Beerbaum P, Mosegaard J, et al. Virtual Kovacic JC. Contemporary and future approaches to
cardiotomy based on 3-D MRI for preoperative planning precision medicine in inherited cardiomyopathies. J Am Coll
in congenital heart disease. Pediatr Radiol. 2008; Cardiol. 2021;77(20):2551-2572.
38(12):1314-1322.
doi: 10.1016/j.jacc.2020.12.072
doi: 10.1007/s00247-008-1032-5
100. Grafton F, Ho J, Ranjbarvaziri S, et al. Deep learning detects
89. Staffa SJ, Zurakowski D. A basic machine learning primer cardiotoxicity in a high-content screen with induced
for surgical research in congenital heart disease. World J pluripotent stem cell-derived cardiomyocytes. eLife.
Volume 11 Issue 5 (2025) 24 doi: 10.36922/JCTR025230026

