Page 28 - JCTR-11-5
P. 28
Journal of Clinical and
Translational Research AI and LLMs in iPSC cardiac research
doi: 10.1186/s40364-024-00672-z doi: 10.1002/qub2.65
32. Talman V, Teppo J, Pöhö P, et al. Molecular atlas of 44. Hochstadt A, Barbhaiya C, Aizer A, et al. Performance of
postnatal mouse heart development. J Am Heart Assoc. a protein language model for variant annotation in cardiac
2018;7(20):e010378. disease. J Am Heart Assoc. 2024;13(20):e036921.
doi: 10.1161/jaha.118.010378 doi: 10.1161/jaha.124.036921
33. Hayat R. Dynamics of metabolism and regulation of 45. Llm-Jp, Aizawa A, Aramaki E, et al. LLM-JP: A Cross-
epigenetics during cardiomyocytes maturation. Cell Biol Int. Organizational Project for the Research and Development
2022;47(1):30-40. of Fully Open Japanese LLMs. New York: arXiv Cornell
University; 2024.
doi: 10.1002/cbin.11931
doi: 10.48550/arxiv.2407.03963
34. Huang L, Wang Q, Gu S, Cao N. Integrated metabolic and
epigenetic mechanisms in cardiomyocyte proliferation. 46. Cui H, Wang C, Maan H, et al. scGPT: Toward building
J Mol Cell Cardiol. 2023;181:79-88. a foundation model for single-cell multi-omics using
generative AI. Nat Methods. 2024;21(8):1470-1480.
doi: 10.1016/j.yjmcc.2023.06.002
doi: 10.1038/s41592-024-02201-0
35. Rommel C, Hein L. Four dimensions of the cardiac
myocyte epigenome: From fetal to adult heart. Curr Cardiol 47. Hao M, Gong J, Zeng X, et al. Large Scale Foundation Model
Rep. 2020;22(5):26. on Single-Cell Transcriptomics. bioRxiv New York: Cold
Spring Harbor Laboratory; 2023.
doi: 10.1007/s11886-020-01280-7
doi: 10.1101/2023.05.29.542705
36. Zamora-Dorta M, Laine-Menéndez S, Abia D, et al.
Time-resolved mitochondrial screen identifies 48. Li Y, Mamouei M, Khorshidi GS, et al. Hi-BEHRT:
regulatory components of oxidative metabolism. EMBO Hierarchical Transformer-based Model for Accurate Prediction
Rep. 2025;26:3045-3074. of Clinical Events Using Multimodal Longitudinal Electronic
Health Records. New York: arXiv Cornell University; 2021.
doi: 10.1038/s44319-025-00459-9
doi: 10.48550/arxiv.2106.11360
37. Liu B, Chang H, Yang D, et al. A deep learning framework
assisted echocardiography with diagnosis, lesion 49. Ning Z, Jiang X, Huang H, et al. Machine learning integration
localization, phenogrouping heterogeneous disease, and of multimodal data identifies key features of circulating
anomaly detection. Sci Rep. 2023;13:3. NT-proBNP in people without cardiovascular diseases. Sci
Rep. 2025;15(1):12015.
doi: 10.1038/s41598-022-27211-w
doi: 10.1038/s41598-025-96689-x
38. Panahiazar M, Taslimitehrani V, Pereira N, Pathak J. Using
EHRs and machine learning for heart failure survival 50. Neyazi M, Bremer JP, Knorr MS, et al. Deep learning-based
analysis. Stud Health Technol Inform. 2015;216:40-44. NT-proBNP prediction from the ECG for risk assessment in
the community. Clin Chem Lab Med. 2023;62(4):740-752.
doi: 10.3233/978-1-61499-564-7-40
doi: 10.1515/cclm-2023-0743
39. Pan J, Lee S, Cheligeer C, et al. Integrating large language
models with human expertise for disease detection in 51. Gunčar G, Kukar M, Smole T, et al. Differentiating viral and
electronic health records. Comput Biol Med. 2025;191:110161. bacterial infections: A machine learning model based on
routine blood test values. Heliyon. 2024;10(8):e29372.
doi: 10.1016/j.compbiomed.2025.110161
doi: 10.1016/j.heliyon.2024.e29372
40. Zhu Y, Huang R, Wu Z, et al. Deep learning-based predictive
identification of neural stem cell differentiation. Nat 52. Maxwell YL. In HFREF, AI Shows Promise for Predicting
Commun. 2021;12:2614. Beta Blocker Response; 2021. Available from: https://www.
tctmd.com/news/hfref-ai-shows-promise-predicting-beta-
doi: 10.1038/s41467-021-22758-0
blocker-response [Last accessed on 2025 May 20].
41. Pickard J, Choi MA, Oliven N, et al. Bioinformatics Retrieval 53. Kyro GW, Martin MT, Watt ED, Batista VS. CardioGenAI:
Augmentation Data (BRAD) Digital Assistant. New York: A Machine Learning-Based Framework for Re-Engineering
arXiv Cornell University; 2024.
Drugs for Reduced HERG Liability. New York: arXiv Cornell
doi: 10.48550/arxiv.2409.02864 University; 2024.
42. Sapunov G. Deep Learning with JAX. United States: Simon doi: 10.48550/arxiv.2403.07632
and Schuster; 2024.
54. Chiu CE, Pinto AL, Chowdhury RA, Christensen K,
43. Hao M, Wei L, Yang F, et al. Current opinions on large Varela M. Characterisation of Anti-Arrhythmic Drug Effects
cellular models. Quant Biol. 2024;12(4):433-443. on Cardiac Electrophysiology using Physics-Informed Neural
Volume 11 Issue 5 (2025) 22 doi: 10.36922/JCTR025230026

