Page 33 - JCTR-11-5
P. 33

Journal of Clinical and
            Translational Research                                                AI and LLMs in iPSC cardiac research



            142. Xue Z, Hennelly S, Doyle B, et al. A G-Rich Motif in the   153. Li Z, Brittan M, Mills NL. A multimodal OMIcS framework
               lncRNA Braveheart interacts with a zinc-finger transcription   to empower target discovery for cardiovascular regeneration.
               factor to specify the cardiovascular lineage.  Mol Cell.   Cardiovasc Drugs Ther. 2023;38(2):223-236.
               2016;64(1):37-50.
                                                                  doi: 10.1007/s10557-023-07484-7
               doi: 10.1016/j.molcel.2016.08.010
                                                               154. Reitz CJ, Kuzmanov U, Gramolini AO. Multi‐omic analyses
            143. Maurya SS, Yang W, Zhang Q, et al. KDM6A Knockout in   and network biology in cardiovascular disease. Proteomics.
               Human iPSCs Alters the Genome-wide Histone Methylation   2023;23(21-22):e202200289.
               Profile at Active and Poised Enhancers, Activating Expression      doi: 10.1002/pmic.202200289
               of Ectoderm Gene Expression Pathways. bioRxiv. New York:
               Cold Spring Harbor Laboratory; 2021.            155. Alemu R, Sharew NT, Arsano YY,  et al. Multi-omics
                                                                  approaches  for  understanding  gene-environment
               doi: 10.1101/2021.03.09.434633
                                                                  interactions in noncommunicable diseases: Techniques,
            144. Hayashi H, Ko T, Dai Z, et al. TRAITER: Transformer-guided   translation, and equity issues. Hum Genomics. 2025;19(1):8.
               diagnosis and prognosis of heart failure using cell nuclear      doi: 10.1186/s40246-025-00718-9
               morphology and DNA damage marker.  Bioinformatics.
               2024;40(11):btae610.                            156. Isasi R, Bentzen HB, Fabbri M, et al. Dynamic governance:
                                                                  A  new era for consent for stem cell research.  Stem Cell
               doi: 10.1093/bioinformatics/btae610
                                                                  Reports. 2024;19(9):1233-1241.
            145. Cyganek L, Tiburcy M, Sekeres K, et al. Deep phenotyping      doi: 10.1016/j.stemcr.2024.07.006
               of human induced pluripotent stem cell-derived atrial and
               ventricular cardiomyocytes. JCI Insight. 2018;3(12):e99941.  157. Orzechowski M, Schochow M, Kühl M, Steger F. Content
                                                                  and method of information for participants in clinical
               doi: 10.1172/jci.insight.99941
                                                                  studies with Induced Pluripotent stem cells (IPSCS). Front
            146. Yang D, Gomez-Garcia J, Funakoshi S, et al. Modeling human   Cell Dev Biol. 2021;9:627816.
               multi-lineage heart field development with pluripotent stem      doi: 10.3389/fcell.2021.627816
               cells. Cell Stem Cell. 2022;29(9):1382-1401.e8.
                                                               158. Borziak K, Parvanova I, Finkelstein J. ReMeDy: A platform
               doi: 10.1016/j.stem.2022.08.007
                                                                  for integrating and sharing published stem cell research data
            147. Rahman  S,  Jiang  LY,  Gabriel  S,  Aphinyanaphongs  Y,   with a focus on iPSC trials. Database. 2021;2021:baab038.
               Oermann EK,  Chunara R.  Generalization in Healthcare      doi: 10.1093/database/baab038
               AI: Evaluation of a Clinical Large Language Model; 2024.
               Available from: https://arxiv.org/abs/2402.10965v2 [Last   159. Tian S, Jin Q, Yeganova L, et al. Opportunities and challenges
               accessed on 2025 May 20].                          for ChatGPT and large language models in biomedicine and
                                                                  health. Brief Bioinform. 2023;25(1):bbad493.
            148. Quer G, Topol EJ. The potential for large language models
               to transform cardiovascular medicine. Lancet Digit Health.      doi: 10.1093/bib/bbad493
               2024;6(10):e767-e771.                           160. Al-Janabi O, Alyasiri OM, Jebur EA, Nafl SM. Evaluating AI
               doi: 10.1016/s2589-7500(24)00151-1                 language models in news retrieval: A comparative study of
                                                                  ChatGPT-Plus and DeepSeek (R1). InfoTech Spectr Iraqi J
            149. Gendler M, Nadkarni GN, Sudri K, et al. Large Language   Data Sci. 2024;2(2):14-20.
               Models  in Cardiology: A  Systematic  Review.  medRxiv.
               New York: Cold Spring Harbor Laboratory; 2024.     doi: 10.51173/ijds.v2i2.33
               doi: 10.1101/2024.09.01.24312887                161. Wu J, Wang Z, Qin Y. Performance of Deepseek-R1 and
                                                                  ChatGPT-4O on the Chinese national medical licensing
            150. Volpato V, Webber C. Addressing variability in iPSC-  examination: A comparative study. J Med Syst. 2025;49(1):74.
               derived models of human disease: Guidelines to promote
               reproducibility. Dis Models Mech. 2020;13(1):dmm042317.     doi: 10.1007/s10916-025-02213-z
               doi: 10.1242/dmm.042317                         162. Lin S, Duan Y, Zhou T, Liu X, Wang J. EHMQA-GPT:
                                                                  A  knowledge Augmented large language model for
            151. Kim K, Doi A, Wen B, et al. Epigenetic memory in induced   personalized elderly health management.  Information.
               pluripotent stem cells. Nature. 2010;467(7313):285-290.
                                                                  2025;16(6):467.
               doi: 10.1038/nature09342
                                                                  doi: 10.3390/info16060467
            152. Chai B, Efstathiou C, Yue H, Draviam VM. Opportunities   163. Kyro GW, Martin MT, Watt ED, Batista VS. CardioGenAI:
               and challenges for deep learning in cell dynamics research.   A  machine learning-based framework for re-engineering
               Trends Cell Biol. 2023;34(11):955-967.
                                                                  drugs  for  reduced  hERG  liability.  J  Cheminform.
               doi: 10.1016/j.tcb.2023.10.010                     2025;17(1):30.


            Volume 11 Issue 5 (2025)                        27                         doi: 10.36922/JCTR025230026
   28   29   30   31   32   33   34   35   36   37   38