Page 113 - MI-2-3
P. 113

Microbes & Immunity                                                SARS-CoV-2 complementary classification



               Proc Natl Acad Sci U S A. 2004;101(30):11030-11035.     doi: 10.1016/j.chom.2016.03.009
               doi: 10.1073/pnas.0404206101                    108. van Dorp L, Richard D, Tan CCS, Shaw LP, Acman M,
                                                                  Balloux F. No evidence for increased transmissibility
            96.  Ren A, Ishida T, Akiyama Y. Assessing statistical reliability   from recurrent mutations in SARS-CoV-2.  Nat Commun.
               of phylogenetic trees via a speedy double bootstrap method.   2020;11(1):5986.
               Mol Phylogenet Evol. 2013;67(2):429-435.
                                                                  doi: 10.1038/s41467-020-19818-2
               doi: 10.1016/j.ympev.2013.02.011
                                                               109. Davies NG, Abbott S, Barnard RC,  et  al. Estimated
            97.  Rambaut A, Drummond A.  FigTree v1. 3.1 Institute of   transmissibility and impact of SARS-CoV-2 lineage B.1.1.7
               Evolutionary Biology. Scotland: University of Edinburgh.   in England. Science. 2021;372(6538):eabg3055.
               2010.
                                                                  doi: 10.1126/science.abg3055
            98.  Lemoine F, Gascuel O. The Bayesian phylogenetic bootstrap
               and its application to short trees and branches.  Mol Biol   110. Gutierrez  B,  Márquez  S,  Prado-Vivar  B,  et al.  Genomic
               Evol. 2024;41(11):msae238.                         epidemiology of SARS-CoV-2 transmission lineages in
                                                                  Ecuador. Virus Evol. 2021;7(2):veab051.
               doi: 10.1093/molbev/msae238
                                                                  doi: 10.1093/ve/veab051
            99.  Candido DS, Claro IM, de Jesus JG,  et al. Evolution
               and epidemic spread of SARS-CoV-2 in Brazil.  Science.   111. Hassan AS, Pybus OG, Sanders EJ, Albert J, Esbjörnsson J.
               2020;369(6508):1255-1260.                          Defining HIV-1 transmission clusters based on sequence
                                                                  data. Aids. 2017;31(9):1211-1222.
               doi: 10.1126/science.abd2161
                                                                  doi: 10.1097/qad.0000000000001470
            100. Tegally  H,  Wilkinson  E,  Lessells  RJ,  et  al.  Sixteen  novel
               lineages  of  SARS-CoV-2  in  South  Africa.  Nat Med.   112. Hedskog C, Parhy B, Chang S,  et al. Identification of 19
                                                                  novel hepatitis C virus subtypes-further expanding HCV
               2021;27(3):440-446.
                                                                  classification. Open Forum Infect Dis. 2019;6(3):ofz076.
               doi: 10.1038/s41591-021-01255-3
                                                                  doi: 10.1093/ofid/ofz076
            101. Tegally H, Wilkinson E, Giovanetti M, et al. Detection of
               a SARS-CoV-2 variant of concern in South Africa. Nature.   113. Takeshita M, Nishina N, Moriyama S,  et al. Immune
                                                                  evasion and chronological decrease in titer of neutralizing
               2021;592(7854):438-443.                            antibody against SARS-CoV-2 and its variants of concerns
               doi: 10.1038/s41586-021-03402-9                    in COVID-19 patients. Clin Immunol. 2022;238:108999.
            102. Day T, Gandon S, Lion S, Otto SP. On the         doi: 10.1016/j.clim.2022.108999
               evolutionary  epidemiology  of  SARS-CoV-2.  Curr Biol.   114. Mahilkar S, Agrawal S, Chaudhary S,  et al. SARS-CoV-2
               2020;30(15):R849-R857.                             variants: Impact on biological and clinical outcome. Front
               doi: 10.1016/j.cub.2020.06.031                     Med (Lausanne). 2022;9:995960.
            103. Faria NR, Mellan TA, Whittaker C,  et al. Genomics and      doi: 10.3389/fmed.2022.995960
               epidemiology of the P.1 SARS-CoV-2 lineage in Manaus,   115. Quintero AM, Eisner M, Sayegh R,  et al. Differences in
               Brazil. Science. 2021;372(6544):815-821.           SARS-CoV-2 clinical manifestations and disease severity in
               doi: 10.1126/science.abh2644                       children and adolescents by infecting variant. Emerg Infect
                                                                  Dis. 2022;28(11):2270-2280.
            104. Focosi D, Maggi F. Recombination in coronaviruses, with a
               focus on SARS-CoV-2. Viruses. 2022;14(6):1239.     doi: 10.3201/eid2811.220577
               doi: 10.3390/v14061239                          116. Cojocaru C, Cojocaru E, Turcanu AM, Zaharia DC. Clinical
                                                                  challenges of SARS-CoV-2 variants (Review). Exp Ther Med.
            105. Turakhia Y, Thornlow B, Hinrichs A, et al. Pandemic-scale   2022;23(6):416.
               phylogenomics reveals the SARS-CoV-2 recombination
               landscape. Nature. 2022;609(7929):994-997.         doi: 10.3892/etm.2022.11343
               doi: 10.1038/s41586-022-05189-9                 117. Parczewski M, Scheibe K, Witak-Jędra M, Pynka M, Aksak-
                                                                  Wąs B, Urbańska A. Infection with HIV-1 subtype  D
            106. Simon-Loriere E, Holmes EC. Why do RNA viruses   adversely affects the live expectancy independently of
               recombine? Nat Rev Microbiol. 2011;9(8):617-626.   antiretroviral drug use. Infect Genet Evol. 2021;90:104754.
               doi: 10.1038/nrmicro2614                           doi: 10.1016/j.meegid.2021.104754
            107. Xiao Y, Rouzine IM, Bianco S,  et al. RNA recombination   118. Baeten JM, Chohan B, Lavreys L, et al. HIV-1 subtype D
               enhances adaptability and is required for virus spread and   infection is associated with faster disease progression than
               virulence. Cell Host Microbe. 2016;19(4):493-503.  subtype A in spite of similar plasma HIV-1 loads. J Infect


            Volume 2 Issue 3 (2025)                        105                           doi: 10.36922/MI025190042
   108   109   110   111   112   113   114   115   116   117   118