Page 113 - MI-2-3
P. 113
Microbes & Immunity SARS-CoV-2 complementary classification
Proc Natl Acad Sci U S A. 2004;101(30):11030-11035. doi: 10.1016/j.chom.2016.03.009
doi: 10.1073/pnas.0404206101 108. van Dorp L, Richard D, Tan CCS, Shaw LP, Acman M,
Balloux F. No evidence for increased transmissibility
96. Ren A, Ishida T, Akiyama Y. Assessing statistical reliability from recurrent mutations in SARS-CoV-2. Nat Commun.
of phylogenetic trees via a speedy double bootstrap method. 2020;11(1):5986.
Mol Phylogenet Evol. 2013;67(2):429-435.
doi: 10.1038/s41467-020-19818-2
doi: 10.1016/j.ympev.2013.02.011
109. Davies NG, Abbott S, Barnard RC, et al. Estimated
97. Rambaut A, Drummond A. FigTree v1. 3.1 Institute of transmissibility and impact of SARS-CoV-2 lineage B.1.1.7
Evolutionary Biology. Scotland: University of Edinburgh. in England. Science. 2021;372(6538):eabg3055.
2010.
doi: 10.1126/science.abg3055
98. Lemoine F, Gascuel O. The Bayesian phylogenetic bootstrap
and its application to short trees and branches. Mol Biol 110. Gutierrez B, Márquez S, Prado-Vivar B, et al. Genomic
Evol. 2024;41(11):msae238. epidemiology of SARS-CoV-2 transmission lineages in
Ecuador. Virus Evol. 2021;7(2):veab051.
doi: 10.1093/molbev/msae238
doi: 10.1093/ve/veab051
99. Candido DS, Claro IM, de Jesus JG, et al. Evolution
and epidemic spread of SARS-CoV-2 in Brazil. Science. 111. Hassan AS, Pybus OG, Sanders EJ, Albert J, Esbjörnsson J.
2020;369(6508):1255-1260. Defining HIV-1 transmission clusters based on sequence
data. Aids. 2017;31(9):1211-1222.
doi: 10.1126/science.abd2161
doi: 10.1097/qad.0000000000001470
100. Tegally H, Wilkinson E, Lessells RJ, et al. Sixteen novel
lineages of SARS-CoV-2 in South Africa. Nat Med. 112. Hedskog C, Parhy B, Chang S, et al. Identification of 19
novel hepatitis C virus subtypes-further expanding HCV
2021;27(3):440-446.
classification. Open Forum Infect Dis. 2019;6(3):ofz076.
doi: 10.1038/s41591-021-01255-3
doi: 10.1093/ofid/ofz076
101. Tegally H, Wilkinson E, Giovanetti M, et al. Detection of
a SARS-CoV-2 variant of concern in South Africa. Nature. 113. Takeshita M, Nishina N, Moriyama S, et al. Immune
evasion and chronological decrease in titer of neutralizing
2021;592(7854):438-443. antibody against SARS-CoV-2 and its variants of concerns
doi: 10.1038/s41586-021-03402-9 in COVID-19 patients. Clin Immunol. 2022;238:108999.
102. Day T, Gandon S, Lion S, Otto SP. On the doi: 10.1016/j.clim.2022.108999
evolutionary epidemiology of SARS-CoV-2. Curr Biol. 114. Mahilkar S, Agrawal S, Chaudhary S, et al. SARS-CoV-2
2020;30(15):R849-R857. variants: Impact on biological and clinical outcome. Front
doi: 10.1016/j.cub.2020.06.031 Med (Lausanne). 2022;9:995960.
103. Faria NR, Mellan TA, Whittaker C, et al. Genomics and doi: 10.3389/fmed.2022.995960
epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, 115. Quintero AM, Eisner M, Sayegh R, et al. Differences in
Brazil. Science. 2021;372(6544):815-821. SARS-CoV-2 clinical manifestations and disease severity in
doi: 10.1126/science.abh2644 children and adolescents by infecting variant. Emerg Infect
Dis. 2022;28(11):2270-2280.
104. Focosi D, Maggi F. Recombination in coronaviruses, with a
focus on SARS-CoV-2. Viruses. 2022;14(6):1239. doi: 10.3201/eid2811.220577
doi: 10.3390/v14061239 116. Cojocaru C, Cojocaru E, Turcanu AM, Zaharia DC. Clinical
challenges of SARS-CoV-2 variants (Review). Exp Ther Med.
105. Turakhia Y, Thornlow B, Hinrichs A, et al. Pandemic-scale 2022;23(6):416.
phylogenomics reveals the SARS-CoV-2 recombination
landscape. Nature. 2022;609(7929):994-997. doi: 10.3892/etm.2022.11343
doi: 10.1038/s41586-022-05189-9 117. Parczewski M, Scheibe K, Witak-Jędra M, Pynka M, Aksak-
Wąs B, Urbańska A. Infection with HIV-1 subtype D
106. Simon-Loriere E, Holmes EC. Why do RNA viruses adversely affects the live expectancy independently of
recombine? Nat Rev Microbiol. 2011;9(8):617-626. antiretroviral drug use. Infect Genet Evol. 2021;90:104754.
doi: 10.1038/nrmicro2614 doi: 10.1016/j.meegid.2021.104754
107. Xiao Y, Rouzine IM, Bianco S, et al. RNA recombination 118. Baeten JM, Chohan B, Lavreys L, et al. HIV-1 subtype D
enhances adaptability and is required for virus spread and infection is associated with faster disease progression than
virulence. Cell Host Microbe. 2016;19(4):493-503. subtype A in spite of similar plasma HIV-1 loads. J Infect
Volume 2 Issue 3 (2025) 105 doi: 10.36922/MI025190042

