Page 30 - MSAM-1-2
P. 30

Materials Science in Additive Manufacturing                      Laser absorption and printability of 90W-Ni-Fe


            Conflict of interest                                  http://doi.org/10.1016/j.cirp.2017.05.011

            Jingjia Sun, Meng Guo, Keyu Shi, and Dongdong Gu   7.   Field AC, Carter LN, Adkins NJ,  et  al., 2020, The effect
            declare that they have no (potential) conflicts or competing   of powder characteristics on build quality of high-purity
            interests with any institutes, organizations, or agencies   tungsten produced via laser powder bed fusion (LPBF).
                                                                  Metall Mater Trans A, 51: 1367–1378.
            that might influence the integrity of results or objective
            interpretation of their submitted works.              http://doi.org/10.1007/s11661-019-05601-6
                                                               8.   Zhang JY, Gu DD, Yang Y, et al., 2019, Influence of particle
            Author contributions                                  size on laser absorption and scanning track formation
            Conceptualization: Dongdong Gu                        mechanisms of pure tungsten powder during selective laser
            Data curation: Jingjia Sun, Meng Guo                  melting. Engineering, 5: 736–745.
            Formal analysis: Dongdong Gu, Jingjia Sun, Meng Guo     http://doi.org/10.1016/j.eng.2019.07.003
            Funding acquisition: Dongdong Gu                   9.   Braun J, Kaserer L, Stajkovic J, et al., 2019, Molybdenum and
            Investigation: Dongdong Gu, Jingjia Sun, Meng Guo     tungsten manufactured by selective laser melting: Analysis
            Methodology: Jingjia Sun, Meng Guo, Keyu Shi          of defect structure and solidification mechanisms.  Int.
            Project administration: Dongdong Gu, Meng Guo         J Refract Met Hard Mater, 84: 104999.
            Resources: Dongdong Gu                                http://doi.org/10.1016/j.ijrmhm.2019.104999
            Software: Jingjia Sun, Keyu Shi, Meng Guo
            Supervision: Dongdong Gu, Meng Guo                 10.  AlMangour B, Grzesiak D, Yang JM, 2017, Selective laser
            Validation: Dongdong Gu, Jingjia Sun, Meng Guo        melting of TiB2/316L stainless steel composites: The roles
            Visualization: Dongdong Gu, Jingjia Sun, Meng Guo, Keyu Shi  of powder preparation and hot isostatic pressing post-
            Writing – original draft: Jingjia Sun                 treatment. Powder Technol, 309: 37–48.
            Writing – review and editing: Dongdong Gu, Meng Guo.     http://doi.org/10.1016/j.powtec.2016.12.073

            References                                         11.  AlMangour B, Grzesiak D, Yang JM, 2018,  In situ
                                                                  formation of TiC-particle-reinforced stainless steel matrix
            1.   Ivekovic A, Montero-Sistiaga ML, Vanmeensel K,  et al.,   nanocomposites  during  ball  milling:  Feedstock  powder
               2019, Effect of processing parameters on microstructure and   preparation for selective laser melting at various energy
               properties of tungsten heavy alloys fabricated by SLM. Int J   densities. Powder Technol, 326: 467–478.
               Refract Met Hard Mater, 82: 23–30.                 http://doi.org/10.1016/j.powtec.2017.11.064
               http://doi.org/10.1016/j.ijrmhm.2019.03.020     12.  Hu ZP, Zhao YN, Guan K, et al., 2020, Pure tungsten and
            2.   Li JF, Wei ZY, Zhou BK,  et al., 2019, Densification,   oxide dispersion strengthened tungsten manufactured
               microstructure and properties of 90W-7Ni-3Fe fabricated   by selective laser melting: Microstructure and cracking
               by selective laser melting. Metals Basel, 9: 884.  mechanism. Addit Manuf, 36: 101579.
               http://doi.org/10.3390/met9080884                  http://doi.org/10.1016/j.addma.2020.101579
            3.   Thompson MK, Moroni G, Vaneker T, et al., 2016, Design   13.  Khairallah SA, Martin AA, Lee JR, et al., 2020, Controlling
               for additive manufacturing: Trends, opportunities,   interdependent meso-nanosecond dynamics and defect
               considerations, and constraints.  Cirp Ann-Manuf Techn,   generation inmetal 3D printing. Science, 368: 660–665.
               65: 737–760.                                       http://doi.org/10.1126/science.aay7830
               http://doi.org/10.1016/j.cirp.2016.05.004       14.  Ge Q, Gu DD, Dai DH, et al., 2021, Mechanisms of laser
            4.   Gu DD, Shi XY, Poprawe R, et al., 2021, Material-structure-  energy absorption and melting behavior during  selective
               performance integrated laser-metal additive manufacturing.   laser melting of titanium-matrix composite: role of ceramic
               Science, 372: eabg1487.                            addition. J Phys D Appl Phys, 54: 115103.
               http://doi.org/10.1126/science.abg1487             http://doi.org/10.1088/1361-6463/abcdce
            5.   Bourell  DL, Rosen  DW, Leu MC,  2014, The roadmap for   15.  Ren ZH, Zhang DZ, Fu G, et al., 2021, High-fidelity modelling
               additive  manufacturing  and  its  impact.  3D Print Addit   of selective laser melting copper alloy: Laser reflection behavior
               Manuf, 1: 6–9.                                     and thermal-fluid dynamics. Mater Design, 207: 109857.
               http://doi.org/10.1089/3dp.2013.0002               http://doi.org/10.1016/j.matdes.2021.109857
            6.   Schmidt M, Merklein M, Bourell D, et al., 2017, Laser based   16.  Boley CD, Mitchell SC, Rubenchik AM, et al., 2016, Metal
               additive manufacturing in industry and academia.  Cirp   powder absorptivity: Modeling and experiment. Appl Opt,
               Ann-Manuf Techn, 66: 561–583.                      55: 6496–6500.


            Volume 1 Issue 2 (2022)                         12                     http://doi.org/10.18063/msam.v1i2.11
   25   26   27   28   29   30   31   32   33   34   35