Page 31 - MSAM-1-2
P. 31

Materials Science in Additive Manufacturing                      Laser absorption and printability of 90W-Ni-Fe


               http://doi.org/10.1364/ao.55.006496             27.  Attar H, Prashanth KG, Zhang LC,  et al., 2015, Effect of
                                                                  powder particle shape on the properties of In Situ Ti-TiB
            17.  Mosallanejad MH, Niroumand B, Aversa A,  et al., 2021,
               In-situ alloying in laser-based additive manufacturing   composite materials produced by selective laser melting.
                                                                  J Mater Sci Technol, 31: 1001–1005.
               processes: A critical review. J Alloys Compd, 872: 159567.
                                                                  http://doi.org/10.1016/j.jmst.2015.08.007
               http://doi.org/10.1016/j.jallcom.2021.159567
                                                               28.  Mio H, Kano J, Saito F, et al., 2004, Optimum revolution
            18.  Huang S, Narayan RL, Tan JH, et al., 2021, Resolving the   and rotational directions and their speeds in planetary ball
               porosity-unmelted inclusion dilemma during  in-situ   milling. Int J Miner Process, 74: S85–S92.
               alloying of Ti34Nb via laser powder bed fusion. Acta Mater,
               204: 116522.                                       http://doi.org/10.1016/j.minpro.2004.07.002
               http://doi.org/10.1016/j.actamat.2020.116522    29.  Gu DD, Shen YF, 2009, Effects of processing parameters on
                                                                  consolidation and microstructure of W-Cu components by
            19.  Zhang XH, Xiao Z, Yu WH, et al., 2022, Influence of erbium   DMLS. J Alloys Compd, 473: 107–115.
               addition on the defects of selective laser-melted 7075
               aluminium alloy. Virtual Phys Prototyping, 17: 406–418.     http://doi.org/10.1016/j.jallcom.2008.05.065
               http://doi.org/10.1080/17452759.2021.1990358    30.  Paradis PF, Ishikawa T, Yoda S, 2005, Viscosity of liquid
                                                                  undercooled tungsten. J Appl Phys, 97: 106101.
            20.  Sing SL, Huang S, Goh GD, et al., 2021, Emerging metallic
               systems for additive manufacturing:  In-situ alloying and      http://doi.org/10.1063/1.1896432
               multi-metal processing in laser powder bed fusion.  Prog   31.  Zhou X, Liu XH, Zhang DD, et al., 2015, Balling phenomena
               Mater Sci, 119: 100795.                            in selective laser melted tungsten. J Mater Process Technol,
               http://doi.org/10.1016/j.pmatsci.2021.100795       222: 33–42.
            21.  Guo  M, Gu  DD,  Xi  LX,  et al.,  2019, Selective  laser  melting      http://doi.org/10.1016/j.jmatprotec.2015.02.032
               additive manufacturing of pure tungsten: Role of volumetric   32.  Zhang DQ, Cai QZ, Liu JH, et al., 2011, Research on process
               energy density on densification, microstructure and mechanical   and microstructure formation of W-Ni-Fe alloy fabricated by
               properties. Int J Refract Met Hard Mater, 84: 105025.  selective laser melting. J Mater Eng Perform, 20: 1049–1054.
               http://doi.org/10.1016/j.ijrmhm.2019.105025        http://doi.org/10.1007/s11665-010-9720-3
            22.  Yang Y, Gu DD, Dai DH, et al., 2018, Laser energy absorption   33.  DebRoy T, Wei  HL,  Zuback JS,  et al., 2018,  Additive
               behavior of powder particles using ray tracing method   manufacturing of metallic components process, structure
               during selective laser melting additive manufacturing of   and properties. Prog Mater Sci, 92: 112–224.
               aluminum alloy. Mater Design, 143: 12–19.
                                                                  http://doi.org/10.1016/j.pmatsci.2017.10.001
               http://doi.org/10.1016/j.matdes.2018.01.043
                                                               34.  Martin JH, Yahata BD, Hundley JM, et al., 2017, 3D printing
            23.  Xia MJ, Gu DD, Yu GQ, et al., 2016, Selective laser melting   of high-strength aluminium alloys. Nature, 549: 365–369.
               3D printing of Ni-based superalloy: Understanding
               thermodynamic mechanisms. Sci Bull, 61: 1013–1022.     http://doi.org/10.1038/nature23894
               http://doi.org/10.1007/s11434-016-1098-7        35.  Li C, Liu ZY, Fang XY, et al., 2018, Residual stress in metal
                                                                  additive manufacturing. Procedia CIRP, 71: 348–353.
            24.  Dai DH, Gu DD, Ge Q, et al., 2020, Mesoscopic study of
               thermal behavior, fluid dynamics and surface morphology      http://doi.org/10.1016/j.procir.2018.05.039
               during selective laser melting of Ti-based composites.   36.  Abbas MA, Yan AR, Wang ZY, 2021, On the use of EBSD
               Comput Mater Sci, 177: 109598.                     and microhardness to study the microstructure properties
               http://doi.org/10.1016/j.commatsci.2020.109598     of tungsten samples prepared by selective laser melting.
                                                                  Materials, 14: 1215.
            25.  Lin KJ, Fang YM, Gu DD, et al., 2021, Selective laser melting
               of graphene reinforced titanium matrix composites: Powder      http://doi.org/10.3390/ma14051215
               preparation and its formability.  Adv Powder Technol,   37.  Zhu HH, Lu L, Fuh JY, 2004, Influence of binder’s liquid
               32: 1426–1437.                                     volume fraction on direct laser sintering of metallic powder.
               http://doi.org/10.1016/j.apt.2021.03.003           Mat Sci Eng A-Struct, 371: 170–177.
            26.  Zhuang J, Gu DD, Xi LX, et al., 2020, Preparation method      http://doi.org/10.1016/j.msea.2003.11.048
               and underlying mechanism of MWCNTs/Ti6Al4V      38.  Gu DD, Guo M, Zhang HM,  et al., 2020, Effects of laser
               nanocomposite powder for selective laser melting additive   scanning strategies on selective laser melting of pure
               manufacturing. Powder Technol, 368: 59–69.         tungsten. Int J Extrem Manuf, 2: 025001.
               http://doi.org/10.1016/j.powtec.2020.04.041        http://doi.org/10.1088/2631-7990/ab7b00


            Volume 1 Issue 2 (2022)                         13                     http://doi.org/10.18063/msam.v1i2.11
   26   27   28   29   30   31   32   33   34   35   36