Page 31 - MSAM-1-2
P. 31
Materials Science in Additive Manufacturing Laser absorption and printability of 90W-Ni-Fe
http://doi.org/10.1364/ao.55.006496 27. Attar H, Prashanth KG, Zhang LC, et al., 2015, Effect of
powder particle shape on the properties of In Situ Ti-TiB
17. Mosallanejad MH, Niroumand B, Aversa A, et al., 2021,
In-situ alloying in laser-based additive manufacturing composite materials produced by selective laser melting.
J Mater Sci Technol, 31: 1001–1005.
processes: A critical review. J Alloys Compd, 872: 159567.
http://doi.org/10.1016/j.jmst.2015.08.007
http://doi.org/10.1016/j.jallcom.2021.159567
28. Mio H, Kano J, Saito F, et al., 2004, Optimum revolution
18. Huang S, Narayan RL, Tan JH, et al., 2021, Resolving the and rotational directions and their speeds in planetary ball
porosity-unmelted inclusion dilemma during in-situ milling. Int J Miner Process, 74: S85–S92.
alloying of Ti34Nb via laser powder bed fusion. Acta Mater,
204: 116522. http://doi.org/10.1016/j.minpro.2004.07.002
http://doi.org/10.1016/j.actamat.2020.116522 29. Gu DD, Shen YF, 2009, Effects of processing parameters on
consolidation and microstructure of W-Cu components by
19. Zhang XH, Xiao Z, Yu WH, et al., 2022, Influence of erbium DMLS. J Alloys Compd, 473: 107–115.
addition on the defects of selective laser-melted 7075
aluminium alloy. Virtual Phys Prototyping, 17: 406–418. http://doi.org/10.1016/j.jallcom.2008.05.065
http://doi.org/10.1080/17452759.2021.1990358 30. Paradis PF, Ishikawa T, Yoda S, 2005, Viscosity of liquid
undercooled tungsten. J Appl Phys, 97: 106101.
20. Sing SL, Huang S, Goh GD, et al., 2021, Emerging metallic
systems for additive manufacturing: In-situ alloying and http://doi.org/10.1063/1.1896432
multi-metal processing in laser powder bed fusion. Prog 31. Zhou X, Liu XH, Zhang DD, et al., 2015, Balling phenomena
Mater Sci, 119: 100795. in selective laser melted tungsten. J Mater Process Technol,
http://doi.org/10.1016/j.pmatsci.2021.100795 222: 33–42.
21. Guo M, Gu DD, Xi LX, et al., 2019, Selective laser melting http://doi.org/10.1016/j.jmatprotec.2015.02.032
additive manufacturing of pure tungsten: Role of volumetric 32. Zhang DQ, Cai QZ, Liu JH, et al., 2011, Research on process
energy density on densification, microstructure and mechanical and microstructure formation of W-Ni-Fe alloy fabricated by
properties. Int J Refract Met Hard Mater, 84: 105025. selective laser melting. J Mater Eng Perform, 20: 1049–1054.
http://doi.org/10.1016/j.ijrmhm.2019.105025 http://doi.org/10.1007/s11665-010-9720-3
22. Yang Y, Gu DD, Dai DH, et al., 2018, Laser energy absorption 33. DebRoy T, Wei HL, Zuback JS, et al., 2018, Additive
behavior of powder particles using ray tracing method manufacturing of metallic components process, structure
during selective laser melting additive manufacturing of and properties. Prog Mater Sci, 92: 112–224.
aluminum alloy. Mater Design, 143: 12–19.
http://doi.org/10.1016/j.pmatsci.2017.10.001
http://doi.org/10.1016/j.matdes.2018.01.043
34. Martin JH, Yahata BD, Hundley JM, et al., 2017, 3D printing
23. Xia MJ, Gu DD, Yu GQ, et al., 2016, Selective laser melting of high-strength aluminium alloys. Nature, 549: 365–369.
3D printing of Ni-based superalloy: Understanding
thermodynamic mechanisms. Sci Bull, 61: 1013–1022. http://doi.org/10.1038/nature23894
http://doi.org/10.1007/s11434-016-1098-7 35. Li C, Liu ZY, Fang XY, et al., 2018, Residual stress in metal
additive manufacturing. Procedia CIRP, 71: 348–353.
24. Dai DH, Gu DD, Ge Q, et al., 2020, Mesoscopic study of
thermal behavior, fluid dynamics and surface morphology http://doi.org/10.1016/j.procir.2018.05.039
during selective laser melting of Ti-based composites. 36. Abbas MA, Yan AR, Wang ZY, 2021, On the use of EBSD
Comput Mater Sci, 177: 109598. and microhardness to study the microstructure properties
http://doi.org/10.1016/j.commatsci.2020.109598 of tungsten samples prepared by selective laser melting.
Materials, 14: 1215.
25. Lin KJ, Fang YM, Gu DD, et al., 2021, Selective laser melting
of graphene reinforced titanium matrix composites: Powder http://doi.org/10.3390/ma14051215
preparation and its formability. Adv Powder Technol, 37. Zhu HH, Lu L, Fuh JY, 2004, Influence of binder’s liquid
32: 1426–1437. volume fraction on direct laser sintering of metallic powder.
http://doi.org/10.1016/j.apt.2021.03.003 Mat Sci Eng A-Struct, 371: 170–177.
26. Zhuang J, Gu DD, Xi LX, et al., 2020, Preparation method http://doi.org/10.1016/j.msea.2003.11.048
and underlying mechanism of MWCNTs/Ti6Al4V 38. Gu DD, Guo M, Zhang HM, et al., 2020, Effects of laser
nanocomposite powder for selective laser melting additive scanning strategies on selective laser melting of pure
manufacturing. Powder Technol, 368: 59–69. tungsten. Int J Extrem Manuf, 2: 025001.
http://doi.org/10.1016/j.powtec.2020.04.041 http://doi.org/10.1088/2631-7990/ab7b00
Volume 1 Issue 2 (2022) 13 http://doi.org/10.18063/msam.v1i2.11

