Page 28 - MSAM-1-3
P. 28
Materials Science in Additive Manufacturing Biodegradable sustainable electronics
https://doi.org/10.1021/acsnano.7b02826 https://doi.org/10.3390/polym14091863
129. Carvalho JT, Dubceac V, Grey P, et al., 2019, Fully printed zinc 141. Hao XP, Zhang CW, Zhang XN, et al., 2022, Healable,
oxide electrolyte-gated transistors on paper. Nanomaterials, recyclable, and multifunctional soft electronics based on
9: 169. biopolymer hydrogel and patterned liquid metal. Small,
18: 2201643.
130. Lee CJ, Chang YC, Wang LW, et al., 2019, Biodegradable
materials for organic field-effect transistors on a paper https://doi.org/10.1002/smll.202201643
substrate. IEEE Electron Device Lett, 40: 236–239.
142. Moon J, Diaz V, Patel D, et al., 2022, Dissolvable conducting
https://doi.org/10.1109/LED.2018.2890618 polymer supercapacitor for transient electronics. Org
Electron, 101: 106412.
131. Raghuwanshi V, Bharti D, Mahato AK, et al., 2019,
Solution-processed organic field-effect transistors with high https://doi.org/10.1016/j.orgel.2021.106412
performance and stability on paper substrates. ACS Appl
Mater Interfaces, 11: 8357–8364. 143. Gao Y, Zhang Y, Wang X, et al., 2017, Moisture-triggered
physically transient electronics. Sci Adv, 3: e1701222.
https://doi.org/10.1021/acsami.8b21404
https://doi.org/10.1126/sciadv.1701222
132. Zschieschang U, Klauk H, 2019, Organic transistors on
paper: A brief review. J Mater Chem C, 7: 5522–5533. 144. Park CW, Kang SK, Hernandez HL, et al., 2015, Thermally
triggered degradation of transient electronic devices. Adv
https://doi.org/10.1039/C9TC00793H Mater, 27: 3783–3788.
133. Mohammadifar M, Yazgan I, Zhang J, et al., 2018, Green https://doi.org/10.1002/adma.201501180
biobatteries: Hybrid paper-polymer microbial fuel cells. Adv
Sustain Syst, 2: 1800041. 145. Hernandez HL, Kang SK, Lee OP, et al., 2014, Triggered
transience of metastable poly(phthalaldehyde) for transient
https://doi.org/10.1002/adsu.201800041 electronics. Adv Mater, 26: 7637–7642.
134. Kim S, Georgiadis A, Tentzeris MM, 2018, Design of inkjet- https://doi.org/10.1002/adma.201403045
printed RFID-based sensor on paper: single- and dual-tag 146. Kang SK, Murphy RK, Hwang SW, et al., 2016, Bioresorbable
sensor topologies. Sensors (Basel), 18: 1958.
silicon electronic sensors for the brain. Nature, 530: 71–76.
135. Wang Y, Yan C, Cheng SY, et al., 2019, Flexible RFID tag https://doi.org/10.1038/nature16492
metal antenna on paper-based substrate by inkjet printing
technology. Adv Funct Mater, 29: 1902579. 147. Park S, Yun WM, Kim LH, et al., 2013, Inorganic/organic
multilayer passivation incorporating alternating stacks
https://doi.org/10.1002/adfm.201902579
of organic/inorganic multilayers for long-term air-stable
136. Zhu H, Fang Z, Preston C, et al., 2014, Transparent paper: organic light-emitting diodes. Org Electron, 14: 3385–3391.
Fabrications, properties, and device applications. Energy https://doi.org/10.1016/j.orgel.2013.09.045
Environ Sci, 7: 269–287.
148. Feiner R, Fleischer S, Shapira A, et al., 2018, Multifunctional
https://doi.org/10.1039/C3EE43024C
degradable electronic scaffolds for cardiac tissue engineering.
137. Hsieh MC, Kim C, Nogi M, et al., 2013, Electrically J Control Release, 281: 189–195.
conductive lines on cellulose nanopaper for flexible electrical https://doi.org/10.1016/j.jconrel.2018.05.023
devices. Nanoscale, 5: 9289–9295.
149. Son D, Lee J, Lee DJ, et al., 2015, Bioresorbable electronic
https://doi.org/10.1039/C3NR01951A
stent integrated with therapeutic nanoparticles for
138. Miller RA, Brady JM, Cutright DE, 1977, Degradation rates endovascular diseases. ACS Nano, 9: 5937–5946.
of oral resorbable implants (polylactates and polyglycolates):
Rate modification with changes in PLA/PGA copolymer https://doi.org/10.1021/acsnano.5b00651
ratios. J Biomed Mater Res, 11: 711–719. 150. Pietsch M, Schlisske S, Held M, et al., 2020, Biodegradable
inkjet-printed electrochromic display for sustainable short-
https://doi.org/10.1002/jbm.820110507
lifecycle electronics. J Mater Chem C, 8: 16716–16724.
139. Najafabadi AH, Tamayol A, Annabi N, et al., 2014,
Biodegradable nanofibrous polymeric substrates for https://doi.org/10.1039/D0TC04627B
generating elastic and flexible electronics. Adv Mater, 151. Williams NX, Bullard G, Brooke N, et al., 2021, Printable and
26: 5823–5830. recyclable carbon electronics using crystalline nanocellulose
dielectrics. Nat Electron, 4: 261–268.
https://doi.org/10.1002/adma.201401537
https://doi.org/10.1038/s41928-021-00574-0
140. Luoma E, Välimäki M, Ollila J, et al., 2022, Bio-based
polymeric substrates for printed hybrid electronics. Polymers 152. Nadeau P, El-Damak D, Glettig D, et al., 2017, Prolonged
(Basel), 14: 1863. energy harvesting for ingestible devices. Nat Biomed Eng, 1: 22.
Volume 1 Issue 3 (2022) 22 https://doi.org/10.18063/msam.v1i3.15

