Page 28 - MSAM-1-3
P. 28

Materials Science in Additive Manufacturing                           Biodegradable sustainable electronics


               https://doi.org/10.1021/acsnano.7b02826            https://doi.org/10.3390/polym14091863
            129. Carvalho JT, Dubceac V, Grey P, et al., 2019, Fully printed zinc   141. Hao XP, Zhang CW, Zhang XN, et al., 2022, Healable,
               oxide electrolyte-gated transistors on paper. Nanomaterials,   recyclable, and multifunctional soft  electronics  based  on
               9: 169.                                            biopolymer hydrogel and patterned liquid metal.  Small,
                                                                  18: 2201643.
            130. Lee CJ, Chang YC, Wang LW, et  al., 2019, Biodegradable
               materials for organic field-effect transistors on a paper      https://doi.org/10.1002/smll.202201643
               substrate. IEEE Electron Device Lett, 40: 236–239.
                                                               142. Moon J, Diaz V, Patel D, et al., 2022, Dissolvable conducting
               https://doi.org/10.1109/LED.2018.2890618           polymer supercapacitor for transient electronics.  Org
                                                                  Electron, 101: 106412.
            131. Raghuwanshi V, Bharti D, Mahato AK, et al., 2019,
               Solution-processed organic field-effect transistors with high      https://doi.org/10.1016/j.orgel.2021.106412
               performance  and stability  on  paper  substrates.  ACS Appl
               Mater Interfaces, 11: 8357–8364.                143. Gao Y, Zhang Y, Wang X, et al., 2017, Moisture-triggered
                                                                  physically transient electronics. Sci Adv, 3: e1701222.
               https://doi.org/10.1021/acsami.8b21404
                                                                  https://doi.org/10.1126/sciadv.1701222
            132. Zschieschang U, Klauk H, 2019, Organic transistors on
               paper: A brief review. J Mater Chem C, 7: 5522–5533.  144. Park CW, Kang SK, Hernandez HL, et al., 2015, Thermally
                                                                  triggered degradation  of  transient electronic devices.  Adv
               https://doi.org/10.1039/C9TC00793H                 Mater, 27: 3783–3788.
            133. Mohammadifar M, Yazgan I, Zhang J,  et  al., 2018, Green      https://doi.org/10.1002/adma.201501180
               biobatteries: Hybrid paper-polymer microbial fuel cells. Adv
               Sustain Syst, 2: 1800041.                       145. Hernandez  HL, Kang  SK,  Lee  OP, et al., 2014,  Triggered
                                                                  transience of metastable poly(phthalaldehyde) for transient
               https://doi.org/10.1002/adsu.201800041             electronics. Adv Mater, 26: 7637–7642.
            134. Kim S, Georgiadis A, Tentzeris MM, 2018, Design of inkjet-     https://doi.org/10.1002/adma.201403045
               printed RFID-based sensor on paper: single- and dual-tag   146. Kang SK, Murphy RK, Hwang SW, et al., 2016, Bioresorbable
               sensor topologies. Sensors (Basel), 18: 1958.
                                                                  silicon electronic sensors for the brain. Nature, 530: 71–76.
            135. Wang Y, Yan C, Cheng SY, et al., 2019, Flexible RFID tag      https://doi.org/10.1038/nature16492
               metal antenna on paper-based substrate by inkjet printing
               technology. Adv Funct Mater, 29: 1902579.       147. Park S, Yun WM, Kim LH, et al., 2013, Inorganic/organic
                                                                  multilayer passivation incorporating alternating stacks
               https://doi.org/10.1002/adfm.201902579
                                                                  of organic/inorganic multilayers for long-term air-stable
            136. Zhu H, Fang Z, Preston C, et al., 2014, Transparent paper:   organic light-emitting diodes. Org Electron, 14: 3385–3391.
               Fabrications, properties, and device applications.  Energy      https://doi.org/10.1016/j.orgel.2013.09.045
               Environ Sci, 7: 269–287.
                                                               148. Feiner R, Fleischer S, Shapira A, et al., 2018, Multifunctional
               https://doi.org/10.1039/C3EE43024C
                                                                  degradable electronic scaffolds for cardiac tissue engineering.
            137. Hsieh MC, Kim C, Nogi M, et al., 2013, Electrically   J Control Release, 281: 189–195.
               conductive lines on cellulose nanopaper for flexible electrical      https://doi.org/10.1016/j.jconrel.2018.05.023
               devices. Nanoscale, 5: 9289–9295.
                                                               149. Son D, Lee J, Lee DJ, et al., 2015, Bioresorbable electronic
               https://doi.org/10.1039/C3NR01951A
                                                                  stent integrated with therapeutic nanoparticles for
            138. Miller RA, Brady JM, Cutright DE, 1977, Degradation rates   endovascular diseases. ACS Nano, 9: 5937–5946.
               of oral resorbable implants (polylactates and polyglycolates):
               Rate modification with changes in PLA/PGA copolymer      https://doi.org/10.1021/acsnano.5b00651
               ratios. J Biomed Mater Res, 11: 711–719.        150. Pietsch M, Schlisske S, Held M, et al., 2020, Biodegradable
                                                                  inkjet-printed electrochromic display for sustainable short-
               https://doi.org/10.1002/jbm.820110507
                                                                  lifecycle electronics. J Mater Chem C, 8: 16716–16724.
            139. Najafabadi  AH,  Tamayol  A, Annabi  N, et  al.,  2014,
               Biodegradable nanofibrous polymeric substrates for      https://doi.org/10.1039/D0TC04627B
               generating elastic and flexible electronics.  Adv Mater,   151. Williams NX, Bullard G, Brooke N, et al., 2021, Printable and
               26: 5823–5830.                                     recyclable carbon electronics using crystalline nanocellulose
                                                                  dielectrics. Nat Electron, 4: 261–268.
               https://doi.org/10.1002/adma.201401537
                                                                  https://doi.org/10.1038/s41928-021-00574-0
            140. Luoma  E,  Välimäki  M,  Ollila  J, et al.,  2022,  Bio-based
               polymeric substrates for printed hybrid electronics. Polymers   152.  Nadeau P, El-Damak D, Glettig D, et al., 2017, Prolonged
               (Basel), 14: 1863.                                 energy harvesting for ingestible devices. Nat Biomed Eng, 1: 22.


            Volume 1 Issue 3 (2022)                         22                     https://doi.org/10.18063/msam.v1i3.15
   23   24   25   26   27   28   29   30   31   32   33